在Dwl同学的不断“请教”下,我彻夜难眠,辗转反侧,终于在今早起床的时候突发奇想,在昨天代码的基础上(详情见(1条消息) 矩阵相邻区域计算_B_qwqxwtx的博客-CSDN博客),我发现在目标矩阵行列数较小的情况下,的确可以做到减少循环次数,然而当目标矩阵较大时,循环的次数反而会倍增!!原因如下:
在我设计的自定义函数中,我对右侧和下侧的点进行了判断,那么在右侧和下侧的点中,就会对相同的点进行判断,如图:
可见,在行列数较小的时候无伤大雅,但越大的话后方的点承受的判断次数就越多,可以说根本达不到简化的目的。因此,我目前想到的最好办法就是——暴力。(当然,还是可以稍加简化一点的)
回顾一下题目:
一个n行m列的矩阵被划分成t个矩形区域,分别用数字1-t来标识,同一个区域内的元素都用同一个数字标识。如下图所示,一个6行8列的矩阵被分成8个矩形区域,分别用编号1-8标识。当两个小区域之间公用一条边时,称这两个区域相邻,例如下图中区域5的相邻区域有6个,分别为1,2,3,6,7,8,但4并不是它的相邻区域。请写一个程序找出区域k的所有相邻区域。
输入说明:
输入第一行为四个整数n,m, t,k,整数之间用空格分隔。n表示矩阵行数(n<20),m表示矩阵列数(m<20),t表示矩阵被划分为t个矩形区域(0<t<50),k为其中某个区域的编号(1<=k<=t)。接下来是n行数据,每行m个整数,表示矩阵内各个元素所在的区域,整数之间用空格分隔。
输出说明:
输出为一个整数,表示与k相邻的区域个数。
思路:
1.1 找到左上角:
for(j=0;j<m;j++){
for(i=1;i<n;i++)
if(a[i][j]==k){//判断要求矩阵的左上角
reach(a,i,j);
break;
}
if(a[i][j]==k)
break;//双重循环退两次
}
1.2 找到右下角:
void reach(int a[][20],int i,int j){
for(int p=i;p<n;j++)
for(int q=j;q<m;i++){
find(a,p,q);
if((a[p+1][q]!=k||p==n-1)&&(a[p][q+1]!=k||q==m-1))
return;
}
}
1.3 暴力判断:
void find(int a[][20],int i,int j){
if(i>0) if(a[i-1][j]!=k) count[a[i-1][j]]=1;//判断上方
if(j>0) if(a[i][j-1]!=k) count[a[i][j-1]]=1;//判断左方
if(i<n-1) if(a[i+1][j]!=k) count[a[i+1][j]]=1;//判断下方
if(j<m-1) if(a[i][j+1]!=k) count[a[i][j+1]]=1;//判断右方
}
2 完整代码:(可能还有bug,大家速速来纠错(/ω\)
#include<stdio.h>
int count[51]={0},n,m,t,k;
void find(int a[][20],int i,int j){
if(i>0) if(a[i-1][j]!=k) count[a[i-1][j]]=1;//判断上方
if(j>0) if(a[i][j-1]!=k) count[a[i][j-1]]=1;//判断左方
if(i<n-1) if(a[i+1][j]!=k) count[a[i+1][j]]=1;//判断下方
if(j<m-1) if(a[i][j+1]!=k) count[a[i][j+1]]=1;//判断右方
}
void reach(int a[][20],int i,int j){
for(int p=i;p<n;j++)
for(int q=j;q<m;i++){
find(a,p,q);
if((a[p+1][q]!=k||p==n-1)&&(a[p][q+1]!=k||q==m-1))
return;
}
}
int main(void){
int a[20][20],i,j,sum=0;
scanf("%d%d%d%d",&n,&m,&t,&k);
for(i=0;i<n;i++)
for(j=0;j<m;j++)
scanf("%d",&a[i][j]);//读取数据
for(j=0;j<m;j++){
for(i=1;i<n;i++)
if(a[i][j]==k){//判断要求矩阵的左上角
reach(a,i,j);
break;
}
if(a[i][j]==k)
break;//双重循环退两次
}
for(i=1;i<=t; i++)
sum+=count[i];//计算邻接的矩阵的总数
printf("%d\n",sum);
for (i = 0; i < n; i++) {
for (j = 0; j < m; j++) {
printf("%d ", a[i][j]);
}
printf("\n");
}
return 0;
}