题目描述
循环数是那些不包括0这个数字的没有重复数字的整数 (比如说, 81362) 并且同时具有一个有趣的性质, 就像这个例子:
bullet 如果你从最左边的数字开始 ( 在这个例子中是8) 数最左边这个数字个数字到右边(回到最左边如果数到了最右边),你会停止在另一个新的数字(如果没有停在一个不同的数字上,这个数就不是循环数). 就像: 8 1 3 6 2 从最左边接下去数8个数字: 1 3 6 2 8 1 3 6 所以下一个数字是6.
重复这样做 (这次从“6”开始数6个数字) 并且你会停止在一个新的数字上: 2 8 1 3 6 2, 也就是2.
再这样做 (这次数两个): 8 1
再一次 (这次一个): 3
又一次: 6 2 8 这是你回到了起点, 在从每一个数字开始数1次之后. 如果你在从每一个数字开始数一次以后没有回到起点, 你的数字不是一个循环数。
给你一个数字 M (在1到9位之间), 找出第一个比 M大的循环数, 并且一定能用一个无符号长整形数装下
输入
仅仅一行, 包括M
输出
仅仅一行,包括第一个比M大的循环数
样例输入
81361
样例输出
81362
#include<stdio.h>
#include<math.h>
#include<string.h>
int main()
{
int n;
int num[10];
int book[10];//用来标记这个数字循环了几次
int i, j, k, l, m, o, p, q;
scanf("%d",&n);
for(i=n+1; ; i++)//从输入的数的后一个开始查找
{
memset(book,0,sizeof(book));//开始将标记设为零
int len=log10(i)+1;//计算该数的位数
int t = i;
int flat=0, glat=0, hlat=0;
for(j=1; j<=len; j++)//将这个数分解并存入num数组中
{
num[j]= t/pow(10,len-j);
if(num[j]==0)//如果这个数中有零直接结束再寻找下一个
{
flat=1;
break;
}
t=t%int(pow(10,len-j));
}
for(p=1; p<len; p++)//检查这个数组中是否有相等的数
for(q=p+1; q<=len; q++)
{
if(num[p]==num[q]) //如果有直接结束再寻找下一个
{
flat=1;
break;
}
}
if(flat==0)//如果不含零或相等的元素,就进行下一步判断
{
int k=1;
book[k]=1;//从头开始判断并标记
while(1)
{
//找他的下一个数并标记
if(num[k]%len+k<=len)
k=num[k]%len+k;
else
k=(num[k]%len+k)%len;
book[k]+=1;
for(o=1; o<=len; o++)
{
if(book[o]==2)//如果有一个数循环了两次就结束
{
hlat=1;
break;
}
}
if(hlat==1)
break;
}
for(l=1; l<len; l++)//如果循环两次的不是第一个数或者有的数没有循环到就不符合条件
{
if(book[1]!=2||book[l+1]!=1)
{
glat=1;
}
}
if(glat==0)//符合条件就输出
{
for(m=1; m<=len; m++)
printf("%d",num[m]);
}
}
if(flat==0&&glat==0)//不符合条件就找下一个数
break;
}
}