李宏毅机器学习(14)

本文探讨了可解释机器学习(Explainable ML)的重要性,特别是在法律、金融和改进模型中的应用。介绍了局部解释如何分析决策,如通过删除或扰动特征来评估其对结果的影响。同时,提到了正则化方法从生成器角度理解和线性模型(LIME)作为解释复杂模型的工具,特别在图像解释中的应用。
摘要由CSDN通过智能技术生成

Explainable ML

为什么要Explainable ML

有时候机器可能正确率很高,但实际上什么都没学到。这样以后必定是会犯错的。
而当我们有了机器的解释后,不仅可以用于法律、金融,还可以根据解释改进机器学习。
但这并不是必须的:人脑和ML都是黑盒子啊!
所以,ML的目标是让客户、老板、开发者
在这里插入图片描述

Local Explanation: Explain the Decision

将一个物体抽象成一个 V e c t o r Vector Vector,想知道每个部分对决策的重要性。
一种方法:将这个部分去掉,观察变化。
在这里插入图片描述
在这里插入图片描述
另一种方法:在在某一个变量上加一个小小的扰动,并求出偏微分。这样就可以画出Saliency Map
在这里插入图片描述
但这种方法有一个限制:某个数据尽管很重要,但可能已经饱和了,再怎么改变也不会对最后的决策产生影响。比如大象的鼻子长度。
在这里插入图片描述

Regularization from Generator

我们希望知道机器认为的一只猫是什么样的。
方法如下:
在这里插入图片描述

USING A MODEL TO EXPLAIN ANOTHER

有时,我们会遇上一个无法直接解释的模型。那就可以用一种间接的方法去解释:用一个具有解释能力的模型,去模仿这个黑盒子。
比如,可以用linear model去模仿一个局部。这个方法叫做:LIME。
在这里插入图片描述

在这里插入图片描述

LIME: Image

如果想用LIME去解释一个图像该怎么做呢?
先手动将图片分成许多小部分,再随机丢掉某些部分,生成一个新数据,将新数据放入黑盒,查看分数。
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值