李宏毅机器学习(20)

Unsupervised Learning: Neighbor Embedding

PCA和Word Embedding介绍了线性降维的思想,而Neighbor Embedding要介绍的是非线性的降维。

Manifold Learning

有的时候,样本点的分布可能是在高维空间里的一个流行(Manifold),也就是说,样本点其实是分布在低维空间里面,只是被扭曲地塞到了一个高维空间里。地球的表面就是一个流行(Manifold),它是一个二维的平面,但是被塞到了一个三维空间里。
而Manifold Learning要做的就是把这个S型曲面降维展开,把塞在高维空间里的低维空间摊平,此时使用欧氏距离就可以描述样本点之间的相似程度。
在这里插入图片描述

Locally Linear Embedding

其中一种解法就是:局部线性嵌入LLE。
对于一个点 x i x^i xi,我们找出他K个邻居 x j x^j xj w i j w_{ij} wij表示 x i x^i xi x j x^j xj之间的 w e i g h t weight weight,要最小化下面的公式。
接着就可以把 x x xdimension reduction成 z z z了。但是, z i z^i zi z j z^j zj之间的 w e i g h t weight weight也是 w i j w_{ij} wij
在这里插入图片描述
在这里插入图片描述
注意,K不能太大太小。
在这里插入图片描述

Laplacian Eigenmaps

另一种方法叫拉普拉斯特征映射,Laplacian Eigenmaps。
之前在semi-supervised learning有提到smoothness assumption,即我们仅知道两点之间的欧氏距离是不够的,还需要观察两个点在high density区域下的距离。
如果两个点在high density的区域里比较近,那才算是真正的接近。
我们依据某些规则把样本点建立graph,那么smoothness的距离就可以使用graph中连接两个点路径上的edges数来近似。
在这里插入图片描述
注意, z z z的取值必须加上限制: z 1 , z 2 , . . z N z^1,z^2,..z^N z1,z2,..zN的线性组合必须占据整个 R M R^M RM空间。
在这里插入图片描述

t-SNE

前面的方法只假设了相邻的点要接近,却没有假设不相近的点要分开。
这就会导致依旧无法区分不同class的现象。
在这里插入图片描述
因此,要使用t-SNE。
t-SNE也是要做一个从 x x x z z z的降维。我们希望两者的分布越接近越好,因此用KL散度来定义Loss Function。
在这里插入图片描述
要注意的是,t-SNE在降维前后计算相似度的方法是不一样的。
S ( x i , x j ) = e − ∣ ∣ x i − x j ∣ ∣ 2 S(x^i,x^j)=e^{-||x^i-x^j||_2} S(xi,xj)=exixj2
S ′ ( z i , z j ) = 1 1 + ∣ ∣ z i − z j ∣ ∣ 2 S'(z^i,z^j)=\frac{1}{1+||z^i-z^j||_2} S(zi,zj)=1+zizj21
这是因为:

  • 如果原先两个点距离( Δ x \Delta x Δx)比较近,则降维转换之后,它们的相似度( Δ y \Delta y Δy)依旧是比较接近的
  • 如果原先两个点距离( Δ x \Delta x Δx)比较远,则降维转换之后,它们的相似度( Δ y \Delta y Δy)会被拉得更远

在这里插入图片描述
在这里插入图片描述

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值