2025年1月17日,《中国互联网络发展状况统计报告》指出,同时我国网民超11亿人,互联网普及率78.6%,搜索引擎用户规模达8.78亿人,较2023年12月增长5112万人;截至2024年12月,我国有3.31亿人表示自己听说过生成式人工智能产品,占整体人口的23.5%;而生成式人工智能产品的用户规模达2.49亿人,占整体人口17.7%。65%使用生成式人工智能的用户为20-39岁,使用生成式人工智能的用户群体中60%以上是大专以上学历人群。
随着AI搜索工具(如豆包、Kimi、DeepSeek、文心一言、腾讯元宝等)的迅速普及,用户的搜索行为发生了巨大变化。从传统的关键词搜索转向自然语言对话、长文本理解和多模态交互,例如通过语音、图片或视频获取信息。这种转变不仅提升了搜索的便捷性和精准度,还推动了品牌营销策略的变革。品牌需要重新思考数据源和内容布局,通过生成引擎优化(GEO)提升内容的语义逻辑和结构化程度,以适配AI模型的“理解偏好”,从而在AI搜索中占据更高权重。
一、主流AI搜索工具数据源解析
品牌首先需要了解各大AI搜索工具的数据源特点,以便针对性地优化内容。以下是一些主流AI搜索工具的数据源解析。下表为当下各大平台的数据源类型,以及品牌方可以呈现的内容。
平台名称 | 特点 | 搜索功能 | 月活跃用户数(亿) | 品牌方可以呈现的内容 |
百度 | 中国最大的搜索引擎 | 支持网页、图片、视频、新闻等搜索 | 6 | 品牌广告、官网链接、产品信息、新闻稿、视频广告 |
抖音 | 短视频平台 | 支持视频、音乐、话题、用户搜索 | 7 | 短视频广告、品牌挑战赛、直播带货、品牌账号运营、达人合作 |
快手 | 短视频和直播平台 | 支持视频、直播、用户、话题搜索 | 5 | 短视频广告、直播带货、品牌账号运营、达人合作、本地化推广 |
今日头条 | 新闻聚合平台 | 支持新闻、文章、视频、用户搜索 | 3 | 信息流广告、品牌文章、视频广告、新闻稿、精准推送 |
知乎 | 问答社区 | 支持问题、回答、话题、用户搜索 | 1 | 品牌问答、软文推广、专业测评、话题讨论、KOL合作 |
小红书 | 生活方式分享平台 | 支持笔记、商品、用户、标签搜索 | 2 | 种草笔记、产品测评、品牌账号运营、KOL合作、直播带货 |
微信 | 社交平台 | 支持公众号、文章、聊天记录、用户搜索 | 12 | 公众号推文、朋友圈广告、小程序商城、社群运营、视频号内容 |
微博 | 社交媒体平台 | 支持话题、用户、内容搜索 | 5 | 热搜话题、品牌账号运营、KOL合作、短视频广告、直播互动 |
AI 工具平台的数据来源
工具名称 | 数据源 | 特点 | 品牌机会 |
豆包 | 依托字节跳动的海量内容生态(如抖音、今日头条)。 | 短视频、图文内容为主,实时性强,适合年轻用户。 | 通过短视频和话题营销抢占用户注意力。 |
Kimi(月之暗面) | 专注于长文本处理,数据源包括学术论文、行业报告、新闻等。 | 适合深度阅读和分析,用户群体偏专业。 | 通过专业内容和深度分析建立品牌权威性。 |
DeepSeek(深度求索) | 聚焦精准搜索和问答,数据源包括结构化数据、知识图谱和行业数据库。 | 高精度、高相关性,适合垂直领域用户。 | 通过精准问答和数据分析满足用户需求。 |
文心一言(百度) | 百度搜索引擎的全网数据,包括网页、视频、图片等。 | 覆盖面广,适合通用场景。 | 通过SEO优化和内容生态布局提升品牌曝光。 |
腾讯元宝 | 依托腾讯生态(如微信、QQ、腾讯新闻)。 | 社交属性强,适合私域流量运营。 | 通过公众号、小程序和朋友圈广告触达用户。 |
二、DeepSeek整合的多模态数据来源
DeepSeek平台通过整合来自多渠道的文本、图像、视频、用户行为等多模态数据,打破数据孤岛,形成统一的品牌数据资产库。目前,DeepSeek已接入众多平台,涵盖云服务(如阿里云、腾讯云、百度智能云、天翼云、联通云、移动云、英伟达、亚马逊AWS、微软Azure)、互联网应用(如微信、腾讯元宝、腾讯文档、QQ浏览器、阿里国际站、百度搜索)、政务领域(如深圳政务云)、硬件及边缘计算(如华为Atlas系列、爱芯元智、瑞芯微、研智科技)、以及多个媒体平台(如今日头条、微信公众号、小红书、CSDN、知乎、微博等)。这些平台的接入推动了DeepSeek在多领域的应用和普及,加速了AI技术与生活场景的深度融合。
以下是具体的数据来源和整合方式:
(一) 多模态数据来源
DeepSeek平台的数据来源广泛,涵盖了多种媒体形式和渠道:
• 文本数据:包括新闻报道、品牌官网内容、社交媒体帖子、用户评论等。例如,多家媒体、三家运营商、互联网平台等已接入DeepSeek,为平台提供了丰富的文本数据。
• 图像数据:来自新闻图片、产品展示图、社交媒体图像等。DeepSeek通过图像预处理技术(如空间金字塔池化+SPP)提取图像特征。
• 视频数据:包括新闻视频、品牌宣传视频、用户生成的视频内容等。平台支持视频数据的特征提取和处理。
• 用户行为数据:通过与媒体平台的合作,DeepSeek能够获取用户在不同场景下的行为数据,如阅读习惯、观看时长、互动行为(如点赞、回复、评论)等等。
(二) 多渠道数据整合
DeepSeek通过以下方式实现多渠道数据的整合:
• 跨模态数据湖:平台内置跨模态数据湖,支持图像、文本、语音等多种模态数据的并行预处理。
• 多模态预训练模型:DeepSeek提供多模态预训练模型库(如DeepSeek-Vision、DeepSeek-Language),能够对不同模态的数据进行特征提取和对齐。
• 实时数据中台:通过构建实时数据中台,DeepSeek能够与媒体平台无缝衔接,解决数据滞后问题。
(三) 形成统一的品牌数据资产库
通过整合多模态数据,DeepSeek能够为品牌提供以下支持:
• 统一数据管理:将来自不同渠道的多模态数据整合到一个统一的数据资产库中,便于品牌进行集中管理和分析。对用户来说,只需通过一个端口即可获得企业全面的信息。
• 智能推荐与分析:利用多模态数据的融合,DeepSeek能够为品牌提供更精准的用户画像和个性化推荐服务。针对用户个性标签、用户习惯、体验及用户的搜索询问,DeepSeek可以精准匹配用户的需求,从而减少用户更多的信息搜索的时间。
• 跨模态融合技术:通过跨模态融合技术(如多头潜在注意力机制MHLA),DeepSeek能够实现不同模态数据之间的无缝交互和协同优化。
通过以上方式,DeepSeek平台能够有效整合多渠道的多模态数据,打破数据孤岛,为品牌提供更全面、高效的数据支持和智能服务。
三、DeepSeek时代,品牌如何抓住机遇,精准触达消费者?
在数字化浪潮的推动下,人工智能平台如DeepSeek正在重塑消费者的搜索行为和品牌传播方式。对于品牌方来说,这既是挑战,也是机遇。如何在DeepSeek时代脱颖而出,精准传达品牌核心价值,成为每个市场人必须思考的问题。
•读懂消费者:从“搜索”到“需求”
在DeepSeek平台上,消费者的每一次搜索背后,都隐藏着真实的需求和意图。品牌方需要做的,不仅仅是匹配关键词,更要读懂消费者的心。洞察搜索意图如消费者搜索“高端护肤品”时,可能不仅仅是在找产品,更是在寻找一种生活方式或身份认同。通过分析用户的搜索行为,可以精准调整内容策略,确保每一次展示都能打动目标用户。 在信息爆炸的时代,单纯的产品展示已经无法吸引消费者的注意力。品牌需要用更生动的方式,讲好自己的故事。结合图文、视频、直播等形式,让品牌故事更立体、更直观。例如,通过短视频展示产品的制作工艺,或者用图文并茂的方式讲述品牌的历史与理念。通过内容与消费者建立情感连接。例如,讲述品牌如何解决用户的痛点,或者如何与用户共同成长。
• 数据驱动:让品牌传播更聪明
DeepSeek平台的核心优势在于其强大的数据分析能力。品牌方可以借助这一能力,实现更精准、更高效的传播。通过分析用户的搜索行为、互动数据等,构建更细致的用户画像,了解他们的兴趣、偏好和需求。根据实时数据反馈,调整内容投放策略。例如,发现某类内容的点击率较高时,可以加大相关内容的投入。通过数据分析,提前捕捉行业趋势和消费者需求的变化,抢占市场先机。
• 全渠道整合:让品牌声音更一致
在DeepSeek时代,消费者的注意力分散在各个平台上。品牌方需要确保,无论用户在哪个渠道接触到品牌,都能感受到一致的核心价值。从官网到社交媒体,从电商平台到线下活动,品牌的核心信息(如口号、视觉风格、价值观等)必须保持一致。根据不同渠道的特点,制定差异化的传播策略。例如,在社交媒体上注重互动性,在电商平台上注重产品展示。通过DeepSeek平台整合多渠道数据,实现品牌传播的全链路优化。
• 创新与技术赋能:让品牌走得更远
DeepSeek平台不仅是一个工具,更是一个能够赋能品牌创新的伙伴。品牌方需要积极拥抱新技术,探索新的传播方式。通过人工智能和增强现实技术,打造沉浸式的品牌体验。例如,利用AR技术让用户“试穿”服装或“试用”化妆品。提升团队的数据分析能力,将数据驱动的思维融入品牌策略的每一个环节。与DeepSeek等人工智能平台建立深度合作,获取技术支持和资源赋能,共同探索品牌传播的新可能。
在DeepSeek时代,品牌传播不再是单向的信息输出,而是与用户建立深度连接的过程。通过精准的数据分析、创新的内容形式和全渠道的整合传播,品牌方不仅能够应对AI技术带来的挑战,还能在激烈的市场竞争中占据先机,赢得消费者的心。
未来已来,品牌方唯有紧跟技术趋势,拥抱变革,才能在DeepSeek时代实现持续增长,创造更大的商业价值。