在信息爆炸的今天,AI 搜索正以前所未有的速度重塑商业格局。作为企业老板或品牌总监,如果你还在沿用传统的 SEO 策略,那么你的品牌很可能在这场数字化变革中被边缘化。AI 搜索不仅改变了用户获取信息的方式,还彻底颠覆了品牌的营销逻辑。
本文将带你深入了解 AI 搜索的底层逻辑与实战场景,并为你提供应对策略略,帮助你在AI新搜索时代抢占先机。
一、用户获取信息的方式已彻底改变
1. 从“搜索”到“问答”:用户习惯的重塑
过去,用户通过搜索引擎输入关键词,然后在海量网页中筛选信息。如今,用户更倾向于通过豆包、KIMI、DEEPSEEK、文心一言等大模型直接提问。例如:
- 传统搜索
:输入“2024年新能源汽车品牌排名” → 点击10个网页自行对比
- AI搜索:直接提问“30万预算买新能源SUV,家用为主,哪个品牌最靠谱?” → 获得包
企业风险点:若品牌未针对问答场景优化内容,用户将在决策链前端被竞品拦截。
2. 多模态交互:搜索体验的全面升级
AI 搜索支持语音、图像、视频等多种交互方式。例如:
- 年轻人求职:向KIMI上传简历截图并提问“如何优化这段工作经历描述?”
- 宝妈购物:用豆包拍摄儿童餐椅照片并询问“同款安全座椅哪个平台最便宜?”
关键提示:品牌需将产品信息转化为多模态内容(图文、视频、3D模型),否则将被用户快速淘汰。
二、AI 搜索的底层逻辑(含人类行为因素)
1. 自然语言处理(NLP)与人类表达惯性
- 技术层面:NLP 解析用户输入的自然语言,识别查询意图
- 行为层面:人类提问存在三大惯性
- 口语化:用户更倾向说“怎么挑不卡粉的粉底”而非“粉底液选购指南”
- 场景化:62%的搜索包含具体场景词,如“办公室久坐族护腰神器”
- 情绪化:搜索“加盟奶茶店血本无归”的用户,真实需求是“低风险
创业项目”
2. 机器学习与深度学习:优化搜索结果
通过海量数据训练,AI 可动态优化结果相关性。例如,当大量用户搜索“Dyson吹风机值不值”时,AI 会优先展示产品性能对比、是否值得购买等深度内容容。
3. 向量搜索与语义搜索:精准匹配需求
(1)向量搜索:让 AI 理解“意思”而不是“字”
想象你在超市问店员“苹果在哪里”,店员会问:“你要的是吃的苹果,还是苹果果手机?”向量搜索就是让 AI 像这个聪明的店员一样,根据上下文猜出你的真实需求。
你搜“便宜又好用的手机”,传统搜索可能只给你一堆广告,但向量搜索会理解你想要“性价比高的手机”,然后推荐真正适合你的结果。
(2)语义搜索:让 AI 听懂“人话”
-
传统搜索:你搜“怎么挑不卡粉的粉底”,搜索引擎只会找包含“粉底”“卡粉”这些关键词的网页,结果可能是一堆无关内容。
-
语义搜索:AI 会理解你这句话的意思,知道你是在问“如何选择适合自己肤质的粉底”,然后给你精准的答案。
比如问员工“这个月的业绩怎么样?”,语义搜索不会只找“业绩”“月”这些词,而是理解你在问“整体表现如何”,然后给出详细的分析报告。
你搜“办公室久坐族护腰神器”,语义搜索不会只找“护腰”“神器”这些词,而是理解你需要“缓解久坐腰痛的办公用品”,然后推荐符合你需求的产品。
人类语言的多义性挑战:
-
用户搜索“苹果”可能是水果、手机品牌或电影《苹果》
-
AI 通过上下文识别真实意图:搜索“苹果 2024发布会”自动关联科技类内容。
三、AI 搜索的页面展现形式及应用场景
AI 搜索的4种典型页面展现
1. 直接答案卡片,如百度AI搜索。
- 企业行动:注重口碑类长尾词的布局,特别是垂直榜单类内容铺设。
2. 多模态结果聚合
• 案例:豆包处理“露营装备采购清单”时,混合显示图文攻略、短视频演示、比价工具(实时抓取京东/拼多多价格)
• 企业机会:为产品页同步准备安装视频、3D模型、用户实拍图,
3. 智能推荐延伸
- 场景:在豆包搜索“鲜炖燕窝那家好”,AI 推荐“中小型企业消防报备流程”“开放式办公区降噪方案”
- 应对策略:在官网设置“相关需求”智能推荐模块,预埋20%的关联问题答案,
-
在垂直类APP如:口碑类、点评类、比价类、问答类、质量安全类论坛等。
4. 动态交互追问
- 案例:KIMI处理“我想开奶茶店”时,连续追问“目标城市人均GDP?”
- “是否考虑虑鲜果茶赛道?”,最终生成定制化投资回报分析表。
- 关键动作:在官网预埋行业深度问答树(如奶茶店选址10大陷阱)
四、企业面临的现实困境
核心痛点:用户接收的信息≠企业想传达的信息
- 案例:某国产护肤品主打“敏感肌修护”,但因内容未覆盖“换季烂脸急救”“激素脸恢复”等用户真实搜索词,AI 推荐竞品内容
- 数据警示:89%的企业官网存在“表述鸿沟”——专业术语与用户语言不匹配
其他典型问题:
- 内容精准度不足:传统关键词堆砌无法满足AI对场景化需求的理解
- 语义理解偏差:未覆盖“30岁抗初老面膜”“油痘肌遮瑕”等长尾表达
- 页面体验欠佳:移动端加载>3秒的网站,AI 流量分配权重下降40%
- 缺乏权威背书:无KOL实测、无检测报告的内容,在AI答案中可信度低
五、企业应对策略(诊断纠偏为首要任务)
策略1:AI搜索健康诊断(48小时)
- 诊断工具:
-
百度搜索资源平台-AI摘要覆盖率检测
-
ChatGPT品牌问答模拟测试(提问100个用户可能问的问题)
-
- 纠偏步骤:
-
清洗历史数据:删除官网/社媒中易引发歧义的表述(如“最便宜”改为“性价比首选”)
如:删除官网/社媒中易引发歧义的表述(如“最便宜”改为“性价比首选”)
植入信任锚点:
如:在AI易抓取位置及媒体添加“央视合作品牌”“1000+医院临床验证等权威证书
监控信息流向:使用信息监测工具,监测AI平台上的品牌信息呈现
策略2:语义优化——搭建用户语言库(关键词库)
- 实战方法:
-
抓取竞品、用户、行业头部品牌用户在小红书/抖音/知乎的真实提问
- 用工具(如5118)生成“专业术语-用户语言(关键词)”映射表
企业表述 → 用户搜索词 “多功能料理锅” → “能煎炒煮的懒人锅” “沉浸式学习空间” → “适合考研的出租屋改造”
-
策略3:内容工业化生产
AI 搜索的核心是数据。它通过分析海量信息来理解用户需求并生成答案。
为了让 AI 更好地服务你的用户,你需要提供高质量、结构化的数据。以下是 AI 的“饮食偏好”:
- 结构化数据:AI 喜欢清晰、有条理的信息,比如表格、流程图、FAQ 等。
什么是结构化内容:把信息拆解成小块,方便 AI 理解和抓取。
比如: 问题:如何选择适合油性皮肤的粉底?
答案:1. 选择控油配方;2. 轻薄质地;3. 持久不脱妆。
- 多模态内容:AI 不仅能“吃”文字,还能“消化”图片、视频、音频等内容。
如:企业在宣传时要为产品页添加安装视频、使用教程、用户实拍图。 - 用户语言:AI 需要理解用户的真实表达方式,而不是企业的专业术语。在长尾词及用户体验类关键词上需要多加研究。
如护肤品牌过往企业宣传方向:“油性皮肤护理指南”结构化内容,
AI搜索语境下,可改为:“油性皮肤怎么护肤”时,或者护理的步骤。
针对用户可能提出的问题,提前准备好详细的答案和延伸问题。
六、执行建议
1. 紧急优先级:阻断信息污染
-
排查全网与企业相关的UGC内容(重点:百度百家号、小红书笔记、知乎问答、抖音评论区)
-
对错误信息发起平台投诉(如:在百度搜索投诉中心提交AI摘要纠错)
2. 官网AI适配改造
-
在页面头部添加FAQ结构化数据
-
为产品图添加Alt-text描述(如:“XX品牌抗摔行李箱_机场托运实测视频”)
3. 建立AI搜索响应机制
-
每周监测ChatGPT/文心一言/Kimi/腾讯元宝/Deepseek等平台的企业相关问答
-
设置关键词预警(当AI出现“XX品牌质量差”类回答时自动通知)
AI 搜索正在重构商业竞争规则——用户看到的第一个答案,往往就是最终选择。企业必须解决两大核心问题:
- 说什么:用用户语言替代专业话术
- 在哪说:占领AI摘要卡片的黄金位置
- 不懂怎么去解决问题需要获取落地执行方案请联系我。