# Graph Theory

Description

Little Q loves playing with different kinds of graphs very much. One day he thought about an interesting category of graphs called Cool Graph'', which are generated in the following way:
Let the set of vertices be {1, 2, 3, ..., $n$}. You have to consider every vertice from left to right (i.e. from vertice 2 to $n$). At vertice $i$, you must make one of the following two decisions:
(1) Add edges between this vertex and all the previous vertices (i.e. from vertex 1 to $i-1$).
(2) Not add any edge between this vertex and any of the previous vertices.
In the mathematical discipline of graph theory, a matching in a graph is a set of edges without common vertices. A perfect matching is a matching that each vertice is covered by an edge in the set.
Now Little Q is interested in checking whether a ''Cool Graph'' has perfect matching. Please write a program to help him.

Input

The first line of the input contains an integer $T(1\leq T\leq50)$, denoting the number of test cases.
In each test case, there is an integer $n(2\leq n\leq 100000)$ in the first line, denoting the number of vertices of the graph.
The following line contains $n-1$ integers $a_2,a_3,...,a_n(1\leq a_i\leq 2)$, denoting the decision on each vertice.

Output

For each test case, output a string in the first line. If the graph has perfect matching, output ''Yes'', otherwise output ''No''.

Sample Input

3 2 1 2 2 4 1 1 2

Sample Output

Yes No No

#include <iostream>
#include <stdio.h>
#include <string.h>
using namespace std;
#define MX 100005
int n;
int data[MX];
int main()
{
int T;
cin>>T;
while (T--)
{
scanf("%d",&n);
for (int i=2;i<=n;i++)
scanf("%d",&data[i]);
if (n%2)
{
printf("No\n");
continue;
}
int ok = 1;
int cnt = 0;
for (int i=n;i>=2;i--)
{
if (data[i]==1) cnt++;
else cnt--;
if (cnt<0)
{
ok=0;
break;
}
}
if (ok)
printf("Yes\n");
else
printf("No\n");
}
return 0;
}

• 广告
• 抄袭
• 版权
• 政治
• 色情
• 无意义
• 其他

120