写在前面
在保研中,计算机专业是理工科专业中夏令营竞争最为激烈的专业之一,这与近些年来人工智能发展迅猛息息相关。本科生研究人工智能,也已经不再稀奇,对于进入实验室的同学,拥有着良好的条件当然好,可对于一些没有实验室条件的计算机er,没有了实验室条件的加持,可以从事哪一方面的研究呢?本期岛主就来带大家梳理一下。
01、 人工智能研究方向
1、机器学习/深度学习
机器学习的发展离不开深度学习加持,它给行业带来许多研究成果,并赋能了语音识别、人脸识别、自动驾驶等方面,推动人工智能发展。相对于普通的机器学习,深度学习在海量数据情况下的效果要比机器学习更为出色。
2、计算机视觉
计算机视觉旨在识别和理解图像/视频中的内容。经过50余年发展已成为一个十分活跃的研究领域。如今,互联网上超过70%的数据是图像/视频,全世界的监控摄像头数目已超过人口数,每天有超过八亿小时的监控视频数据生成。如此大的数据量亟待自动化的视觉理解与分析技术。顶级会议有CVPR、ICCV、和ECCV,此外ICLR也有不少计算机视觉论文。顶级期刊有IJCV和TPAMI。
3、机器人/群体智能
人工智能相关研究的关键元素有三个:人、机器人/物联网以及AI[1]。如果三个元素两两之间发生联系就会形成一个新的学科,例如机器人和AI相结合会产生智能体,AI和人类相结合会产生人机耦合以及增强智能,而机器人和人类相融合会形成增强机体。
随着人工智能与机器人领域的发展,研究对象逐渐不再局限在单个智能体,而是越来越多地对多个智能体的协作进行研究,例如人类社会群体如何更好地相融合?如何设计出能够精妙协作的机器群体?
4、其他(强人工智能、神经网络理论等)
强人工智能又称通用人工智能或者完全人工智能,指的是可以胜任人类所有工作的人工智能, 目前所处的时代基本是弱人工智能的时代,人工智能只在某些领域的解决会超过人的水平,要想达到通用人工智能除了单一的智能体以外还要多个智能体的智能,涉及到研究多个智能体和人之间如何协作,如何描述,如何理解等问题。
对于神经网络理论的改进优化,科研方向也有很多种:选取更好的代价函数,优化四种正则化方法(L1和L2正则、dropout、训练数据的扩展),探寻一种更好的初始化权重(weight)的方法等等。
02、 对硬件要求较低的AI方向
本科生研究人工智能,如果没实验室条件,意味着:没项目、没资金,同时,没人带。
研究生一般都配备导师,有着固定的科研任务。相比之下,本科生想进实验室,一般情况下都需自己申请,申请如同求职,不一定通过。在科研中,如果没有实验室条件,意味着不仅是没有科研资金的支持,还意味着没有具体的科研项目(没有明确的目标),没有导师及师兄师姐的帮助(没人带)。
没有科研项目的目标驱动,可以转为自我驱动,没有导师及师兄师姐的帮助,可以转为网络社区求助,可是如果没有科研资金的支持,意味着无法购置所需要的各种价格高昂的材料设备,对于还在求学的本科生,面临着极大的困难。
那么,在人工智能的研究中,有哪些方向,对硬件要求相对较低,可以让没有资金支持的同学降低对硬件的关注,转而真正的投身于科研之中呢?
综合理论
01、神经网络安全与对抗
随着深度学习和神经网络的不断发展,深度神经网络已经广泛应用于多个领域,其安全性也日渐受到人们的关注。对抗攻击和对抗样本作为神经网络最大的威胁之一, 对抗攻击及其防御的研究也对神经网络认知能力的提升也成为了研究方面之一。
02、多任务学习
有多个目标函数同时学习的,即称为多任务学习。如大火的各种短视频APP,在向人群展示视频之前,通常既要预测对这个视频感兴趣/不感兴趣,看多久,点赞/不点赞,转发/不转发等多个维度的信息。
03、多模态学习
人们听到的声音、看到的实物、闻到的味道都是一种模态,人们生活在一个多种模态相互交融的环境中,多模态学习指建立模型使机器从多模态中学习各个模态的信息,并且实现各个模态的信息的交流和转换。多模态学习技术是新的AI技术发展趋势之一。“多模态技术逐渐也在视频网站、电商物流、自动驾驶等领域得到广泛。像爱奇艺的“只看TA”功能,其背后的原理多模态识别技术。
04、损失函数研究
损失函数常用来评估样本的真实值和模型预测值之间的不一致程度,一般用于模型的参数估计。受应用场景、数据集和待求解问题等因素的制约,现有监督学习算法使用的损失函数的种类和数量较多,而且每个损失函数都有各自的特征,因此从众多损失函数中选择适合求解问题最优模型的损失函数是一个重要的课题。
图像处理
对于人工智能而言,只要不涉及大规模训练基本上都可以一个显卡都可以处理解决,这里尤为推荐一些偏图像处理和理解的方向。
01、人物识别
每个机器学习算法都会将数据集作为输入,并从中学习经验。算法会遍历数据并识别数据中的模式。图片中人物,可以被看作一种模式,通过将一张脸映射到一个特征向量上。
02、图像还原
图像复原的目的是从观测到的退化图像重建原始图像,是图像处理、模式识别、机器视觉等的基础,遥感成像、医疗图像等领域获得了重要应用。
03、图像语义分割
图像语义分割中,需要将视觉输入分为不同的语义可解释类别。例如,我们可能需要区分图像中属于汽车的所有像素,并把这些像素涂成蓝色。与图像分类或目标检测相比,语义分割使我们对图像有更加细致的了解。
04、三维重建
三维重建是指对三维物体建立适合计算机表示和处理的数学模型,是在计算机中建立表达客观世界的虚拟现实的关键技术。常规的三维重建如深度图(depth)、点云(point cloud)等。
03、 利用线上平台/竞赛项目数据
对于人工智能相关领域论文,计算机视觉比较火热,同时在计算机视觉中,目标检测又是比较火热的方向之一。人工智能(尤其是算法)的实现需要强大的计算能力的支撑,特别是深度学习算法的大规模使用,对计算能力提出了更高的要求,一般都需要算力较强的计算机来运行,由此,国内多家企业在自身进行AI LAB研究时,不忘服务社会,同时从事AI平台开源服务。
百度AI Studio
2018年,百度推出AI Studio一站式开发平台。该平台集合了AI教程、代码环境、算法算力和数据集,并提供了免费的在线云计算编程环境。
阿里云人工智能平台
阿里达摩院成立以来在自然语言处理、智能语音、视觉计算等领域夺得突出成就,阿里云平台整合资源涉及云计算,网络安全,人工智能,物联网、大数据等多个热门领域。
腾讯AI开放平台
腾讯AI开放平台布局相对较晚,腾讯提出以“基础研究—场景共建—AI开放”为三层架构的整体AI战略,从技术、场景与平台三个层面实现“AI in All”,AI被提到战略级高度。
华为云AI平台
华为的AI平台以华为云为基础,以华为的硬件为依托,在AI能力方面,更突出面向开发者的服务,ModelArts是华为云的AI一站式的开发平台能够支撑开发者从数据到AI应用的全流程开发过程。包含数据处理、模型训练、模型管理、部署等操作。
05、竞赛
除了开源云服务平台,在AI领域还有很多竞赛对自身赛题及其数据、算法进行大规模开源,对于没有实验室条件的同学可以有很大的帮助:
1、Kaggle:https://www.kaggle.com/
2、天池:https://tianchi.aliyun.com/
3、华为云:https://competition.huaweicloud.com/home
4、腾讯广告算法大赛:https://algo.qq.com/
04、总结
总之,本科研究人工智能,正如人类需要从食物中获得能量一样,人工智能也需要“食物”,也就是稳定的数据流,如深度学习算法需要数据来进行“训练”,数据量越大,输出结果就会越准确。因此,想要从事人工智能研究,好的数据、好的算力至关重要!有良好的实验室条件固然理想,但如果没有实验室条件,我们也可以通过选择恰当的方向,利用开源平台等方法做出出色的工作!
引用来源:
[1]IEEE Fellow李世鹏:人工智能与机器人前沿研究之思考https://baijiahao.baidu.com/s?id=1721285258322972543&wfr=spider&for=pc