怎么判断目标学校是强com还是弱com?

文章介绍了保研过程中遇到的“强com”和“弱com”概念,强com院校招生办具有较大决定权,而弱com院校导师的话语权更大。强com院校更注重本科背景和绩点,弱com则更依赖导师的接纳。文章提供了如何判断目标院校的com类型的方法,并推荐了一些典型的强com和弱com院校,建议保研人根据自身条件选择合适路径。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

写在前面

各位关心保研的小伙伴肯定听过强com或者弱com这样的关键词,这些保研“黑话”是什么意思呢?强com院校和弱com院校都有哪些呢?哪些保研人适合强com院校,哪些保研人适合弱com院校呢?今天岛主为大家具体介绍一下。

1、 强com和弱com区别

com是指committee制度。在committee制度中,学院会组织专门的老师,组成一个评审小组,来审核学生的申请,对学生进行统一的考查,来决定是否给学生offer。这些审核小组即学院的招生办,学院招生办的考察一般包括机试、笔试、面试。

强com

强com,即强committee,指目标院校的招生办权力强。强com学院招生办面试占比重,导师没有很大的话语权,学生要先通过招生办的考核,再与导师进行双选。强com的学校是招生办筛人,面对大量的简历,也就决定了老师筛人的办法,先用本科学校、绩点排名、四六级等硬性条件筛掉一批先不合格选手,哪怕竞赛科研再厉害也无法脱颖而出。学院招生办决定学生是否被录取,如果保研人没有通过学院的考查,即使联系的导师给了名额,也没有办法获得院校的offer。强com的学校导师很难捞人,如果你联系到一个很喜欢你的导师,但通不过学院招生办,也无济于事。

com的优点即使保研人没有联系到合适的导师,或者没有出色的科研成果,凭借本科院校的优势和出色的绩点排名,也可以获得目标院校的offer。

弱com

弱com指导师在招生录取中有很大的话语权。一般要联系导师,通过导师的考核,导师只要接收你,招生办那边的考核通常是走过场或者导师可以捞人。弱com的名额是下发到导师的,导师筛人各有偏好,比如某些老师不看重本科学校,偏好竞赛选手。所以面对弱com的学校一定要联系导师,建议一是要趁早,二是要多投,万一能碰上喜欢自己的导师。在弱com院校中,常见的考查形式是导师面试或者课题组统一形式考查,可能也会有学院组织的面试考查,如果有导师给你了offer,据岛主所知,学院面试基本相当于走流程。如果保研人的目标院校是弱com,需要尽早联系导师,和导师确定名额,如果有导师决定接收你,极大概率会获得这个学校的offer。

com的优点如果保研人没有很高的绩点、排名,但是有一些竞赛或者科研成果,可能导师对这些成果很感兴趣,并且答应给了名额,那么获得该院校的offer就十拿九稳。

强com和弱com结合

现今存在一种趋势:越来越多的院校喜欢强com和弱com结合。这些院校首先通过笔试或者面试筛选一部分得分较高的学生,这些学生可以进入面试。进入面试的学生需要尽快联系导师,如果有导师同意接收,那么面试后极大概率会获得offer;相反,进入面试后没有导师答应接收,面试后也很大可能性没有offer。也就是说,笔试和机试的考察过程由学院组织,面试的结果由导师决定。

com和弱com结合优点:强弱com相结合的院校适合综合成绩优异的同学,优秀的绩点排名和扎实的基础知识帮助通过简历筛选和笔试、机试,科研成果和竞赛成绩帮助自己套磁导师,从导师那里取得名额。

2、 如何判断目标学校是强是弱?

每个学校都有自己的招生风格,同一个学校的不同学院招生风格也不同。如何判断目标院校是强com还是弱com?这需要根据往年保研人的经验总结和当年的招生政策判断。

保研人可以通过公众号、QQ群等各种途径获取往年的保研经验,这些经验帖中往往都会介绍学院的招生风格、什么时候联系导师最合适等,以此来判断某所院校是强com还是弱com。

关注每年的夏令营安排通知、推免政策等内容也可以判断某所院校是强com还是弱com。

北航夏令营活动通知中明确表示学院组织C语言上机测试,说明北航是学院考查,是com院校

                   北京航空航天大学计算机学院2022年全国优秀大学生夏令营活动通知

                              https://scse.buaa.edu.cn/info/1099/8925.htm

北邮推荐免试研究生办法中说明“经各招生团队/导师确定复试名单后,学院通过‘推免服务系统’对进入复试的考生发送复试通知”,这足以表明北邮是com院校,后面的复试安排中也再次说明“具体复试安排由复试小组通知学生”,表明北邮的招生权在于导师,各个课题组导师安排考核并决定是否录取。

               北京邮电大学计算机学院2023年推荐免试研究生(含直博生)接收、复试办法

                            https://scs.bupt.edu.cn/info/1050/3144.htm

03、强com院校推荐

  • 清华计算机系和软件学院:强com,主要看机试成绩,机试难度大。

  • 北大微软:强com,入营主要看排名。

  • 上交大软件学院:强com,考核方式是机试和面试。

  • 人大高瓴:强com,拿了优营之后,导师还有一轮比较复杂的考核。

  • 复旦计算机学院:强com,有机试和英文面试和专业面试。

  • 南大计算机学院:强com,需要通过笔试和面试,才能获得offer。

  • 北航计算机学院:强com,机试过线进入面试,机试不合格不接收。

  • 同济大学电子与信息工程学院计算机科学与技术系:强com,考核方式是笔试、机试和面试。

  • 武大计算机学院:强com,考核方式是面试。

4、 弱com院校推荐

  • 清华叉院:弱com,没有上机考试,材料提交之后,如果老师对你感兴趣,会直接跟你联系,进行一对一的交流、考核。

  • 清华深研院:有计算机技术、人工智能、大数据、TBSI、互联网加创新设计五个方向,中弱com,需要机试,并且需要联系导师。

  • 北大计算机学院、智能学院、深研院:超弱com,完全取决于老师是否接收学生,需要尽早联系导师,尽可能进组实习。夏令营无机试,如果老师答应给offer,面试相当于走过场。

  • 中科大计算机学院:弱com,考核方式是面试,面试合格后需要有老师接收才能获得优营。

  • 中科大先进技术研究院:入营方式是弱com,导师推荐入营(越早联系越好),校内强导一般是统一考核,比如说导师是CS或6系的,会放一起统一考核。

  • 浙大软院:弱com,通过面试筛选后,老师建群按课题分配到不同的项目组完成任务,任务考核导师满意就会获得优营。

  • 浙大计算机学院:入营方式是弱com,每位同学选择一位导师,导师审核你是否入营。入营后,每位导师可以选择一名同学进入院系答辩,通过答辩后即可获得优营。

  • 北邮计算机学院:经典弱com,北邮计算机学院需要自己联系老师,分小组进行招生,各小组一般是独立的,预报名之后需要联系导师,各小组导师组织面试,学院没固定通知面试,所以想去北邮的保研人一定要联系导师。

  • 西北工业大学计算机学院:弱com,西工大一定要提前联系导师,这是入营的条件,同时考核也是分课题组直接由导师面试的。西工大选择好导师比较重要,有的课题组考核容易、名额还多;有的课题组考核难,名额少,由于方向热报名人数多竞争激烈。

5、 强弱com结合院校推荐

  • 华科网安学院:简历筛选和机试是强com,机试成绩不合格的话没有面试机会,面试是弱com,面试之前需要联系导师,如果导师给了名额,面试就是“走过场”。

  • 计算所:计算所中一些组是弱com方式入营,再强com方式考核,例如VIPL组。需要先联系导师,通过简单的面试才能获得入营的机会,入营之后课题组会组织硬核考核,包括笔试、机试、面试。

  • 东南大学计算机学院:考核只有面试,需要先联系导师推荐(弱com),在参加学院面试考核(强com)。

写在最后

总之,弱com型院校一定要联系导师,强com型院校可以暂缓,但是有精力还是可以去联系试试。如果老师说“欢迎报考”不代表稳了,如果是弱com型院校说明机会很大,应该继续加深与导师的交流,强com型的院校很可能只是句客套话。双非、绩点排名靠后、四六级有缺陷的同学尽量多留意弱com的院校,强com的院校初审都难过。大家根据自身情况选择院校,祝各位保研人成功保研到心仪院校!

### 回答1: 以下是这些股票指标在Python中的实现: 1. 乖离率 ```python def bias(close, n=5, m=10): ma_n = close.rolling(n).mean() ma_m = close.rolling(m).mean() return (close - ma_m) / ma_m * 100 - (ma_n - ma_m) / ma_m * 100 ``` 2. 心理线 ```python def psy(close, n=12): diff = np.diff((close > close.shift()).astype(int)) diff = np.concatenate(([0], diff)) psy = pd.Series(np.where(diff == 1, n, np.where(diff == -1, 100 - n, np.nan)), index=close.index) psy = psy.fillna(method='ffill') return psy ``` 3. 相对指标(RSI) ```python def rsi(close, n=14): diff = close.diff() up = diff.where(diff > 0, 0) dn = -diff.where(diff < 0, 0) ma_up = up.rolling(n).mean() ma_dn = dn.rolling(n).mean() rs = ma_up / ma_dn rsi = 100 - 100 / (1 + rs) return rsi ``` 4. 异同移动平均线(MACD) ```python def macd(close, n_fast=12, n_slow=26, n_signal=9): ema_fast = close.ewm(span=n_fast, adjust=False).mean() ema_slow = close.ewm(span=n_slow, adjust=False).mean() diff = ema_fast - ema_slow dea = diff.ewm(span=n_signal, adjust=False).mean() macd = 2 * (diff - dea) return macd ``` 5. 随机指标(KDJ) ```python def kdj(high, low, close, n=9, m1=3, m2=3): low_list = low.rolling(n, min_periods=1).min() high_list = high.rolling(n, min_periods=1).max() rsv = (close - low_list) / (high_list - low_list) * 100 k = rsv.ewm(alpha=1/m1, adjust=False).mean() d = k.ewm(alpha=1/m2, adjust=False).mean() j = 3 * k - 2 * d return k, d, j ``` 6. BOLL ```python def boll(close, n=20, k=2): ma = close.rolling(n).mean() std = close.rolling(n).std() up = ma + k * std dn = ma - k * std return ma, up, dn ``` 7. 趋向指标(DMI) ```python def dmi(high, low, close, n=14, m=6): tr = pd.concat([high - low, (high - close.shift()).abs(), (low - close.shift()).abs()], axis=1).max(axis=1) di_plus = (high.diff().clip(lower=0) / tr).rolling(n).sum() * 100 di_minus = (low.diff().clip(lower=0) / tr).rolling(n).sum() * 100 dx = ((di_plus - di_minus ### 回答2: 股票指标是投资者用于分析预测股票价格走势的工具。下面是使用Python编写的一些常用股票指标的代码示例: 1. 乖离率(BR)指标: ``` import pandas as pd def calculate_br(close, ma): return (close - ma) / ma * 100 # 示例: closing_prices = [10, 12, 11, 13, 14] moving_average = pd.Series(closing_prices).rolling(window=5).mean() # 计算5日均线 br = calculate_br(pd.Series(closing_prices), moving_average) print(br) ``` 2. 心理线(PSY)指标: ``` def calculate_psy(close, n): diff = close.diff() # 计算每日价格变动 up_count = diff[diff > 0].count() # 计算上涨天数 psy = up_count / n * 100 return psy # 示例: closing_prices = [10, 12, 11, 13, 14] psy = calculate_psy(pd.Series(closing_prices), 5) # 计算5日心理线 print(psy) ``` 3. 相对指标(RSI): ``` def calculate_rsi(close, n): diff = close.diff() # 计算每日价格变动 up_changes = diff[diff > 0].fillna(0) # 计算上涨幅度 down_changes = -diff[diff < 0].fillna(0) # 计算下跌幅度 avg_up = up_changes.rolling(window=n).mean() # 计算上涨平均值 avg_down = down_changes.rolling(window=n).mean() # 计算下跌平均值 rsi = 100 - (100 / (1 + avg_up / avg_down)) return rsi # 示例: closing_prices = [10, 12, 11, 13, 14] rsi = calculate_rsi(pd.Series(closing_prices), 14) # 计算14日RSI print(rsi) ``` 类似的,可以根据需求编写异同移动平均线、随机指标、BOLL指标、趋向指标等其他指标的Python代码。这些代码示例仅作为简单的参考,实际使用时应根据具体需求进行修改完善。 ### 回答3: 对于股票指标"乖离率、心理线、相对指标 (RSI)、异同移动平均线 (MACD)、随机指标 (KDJ)、BOLL、趋向指标 (ADX)" 需要的python代码如下所示: 1. 乖离率(BIAS): ```python import pandas as pd def BIAS(data, n): MA = data['close'].rolling(n).mean() BIAS = (data['close'] - MA) / MA return BIAS ``` 2. 心理线(PSY): ```python def PSY(data, n): diff = data['close'].diff() diff[diff > 0] = 1 diff[diff < 0] = 0 PSY = diff.rolling(n).mean() * 100 return PSY ``` 3. 相对指标 (RSI): ```python def RSI(data, n): diff = data['close'].diff() diff[diff > 0] = 1 diff[diff < 0] = -1 up = diff.copy() down = diff.copy() up[up < 0] = 0 down[down > 0] = 0 average_up = up.rolling(n).mean() average_down = down.abs().rolling(n).mean() RSI = average_up / (average_up + average_down) * 100 return RSI ``` 4. 异同移动平均线 (MACD): ```python def MACD(data, short_n, long_n, m): short_ema = data['close'].ewm(span=short_n, adjust=False).mean() long_ema = data['close'].ewm(span=long_n, adjust=False).mean() diff = short_ema - long_ema dea = diff.ewm(span=m, adjust=False).mean() macd = (diff - dea) * 2 return macd ``` 5. 随机指标 (KDJ): ```python def KDJ(data, n, m1, m2): L_n = data['low'].rolling(n).min() H_n = data['high'].rolling(n).max() RSV = (data['close'] - L_n) / (H_n - L_n) * 100 K = RSV.ewm(com=m1 - 1, adjust=False).mean() D = K.ewm(com=m2 - 1, adjust=False).mean() J = 3 * K - 2 * D return K, D, J ``` 6. BOLL指标: ```python def BOLL(data, n, k): MA = data['close'].rolling(n).mean() MD = data['close'].rolling(n).std() UP = MA + k * MD DN = MA - k * MD return MA, UP, DN ``` 7. 趋向指标 (ADX): ```python def TR(data): TR = pd.concat([data['high'] - data['low'], abs(data['high'] - data['close'].shift()), abs(data['low'] - data['close'].shift())], axis=1).max(axis=1) return TR def DM(data): UpMove = data['high'].diff() DownMove = data['low'].diff().abs() UpMove[UpMove <= 0] = 0 DownMove[DownMove <= 0] = 0 return UpMove, DownMove def DX(data, n): TR_n = TR(data.iloc[-n:]) UpMove_n, DownMove_n = DM(data.iloc[-n:]) Sum_TR_n, Sum_UpMove_n, Sum_DownMove_n = TR_n.sum(), UpMove_n.sum(), DownMove_n.sum() DIp = Sum_UpMove_n / Sum_TR_n * 100 DIn = Sum_DownMove_n / Sum_TR_n * 100 DX = abs(DIp - DIn) / (DIp + DIn) * 100 return DX def ADX(data, n, m): DX_n = DX(data, n) ADX = DX_n.ewm(com=m - 1, adjust=False).mean() return ADX ``` 以上是使用Python编写的一些常见股票指标的代码,可以根据需要在自己的程序中调用。请注意,这些代码可作为参考,具体在实际使用中可能需要根据不同的数据格式计算方法进行适当的调整优化。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值