根据一个给定经纬度的点,进行附近500米地点查询–合理利用算法

本文介绍了一种通过计算经纬度范围来提高查询效率的方法,避免了对每个站点进行遍历计算,进而快速找到指定站点500米范围内的其他站点。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

最近做一个项目:需要查询一个站点(已知该站点经纬度)500米范围内的其它站点。所以,我首先想到的是,对每条记录,去进行遍历,跟数据库中的每一个点进行距离计算,当距离小于500米时,认为匹配。这样做确实能够得到结果,但是效率极其低下,因为每条记录都要去循环匹配n条数据,其消耗的时间可想而知。

于是我就想到一个先过滤出大概的经纬度范围再进行计算。比方说正方形的四个点,于是我在网上搜索,意外的,查询到了一个关于这个计算附近地点搜索初探,里面使用Python实现了这个想法。所以参考了一下原文中的算法,使用Java进行了实现。

实现原理也是很相似的,先算出该点周围的矩形的四个点,然后使用经纬度去直接匹配数据库中的记录。

思路:首先算出“给定坐标附近500米”这个范围的坐标范围。 虽然它是个圆,但我们可以先求出该圆的外接正方形,然后拿正方形的经纬度范围去搜索数据库。

红色部分为要求的搜索范围,绿色部分我们能间接得到的结果范围

先来求东西两侧的的范围边界。在haversin公式中令φ1 = φ2,可得

distance-lng.png

用Java代码写就是

  1. //先计算查询点的经纬度范围<span style="font-family: 微软雅黑, Helvetica, Times, Arial, serif;">lat已知纬度,lng已知经度</span>  
  2.         double r = 6371;//地球半径千米  
  3.         double dis = 0.5;//0.5千米距离  
  4.         double dlng =  2*Math.asin(Math.sin(dis/(2*r))/Math.cos(lat*Math.PI/180));  
  5.         dlng = dlng*180/Math.PI;//角度转为弧度  
  6.         double dlat = dis/r;  
  7.         dlat = dlat*180/Math.PI;  
最后,就可以得出四个点的坐标:
left-top : (lat + dlat, lng – dlng)
right-top : (lat + dlat, lng + dlng)
left-bottom : (lat – dlat, lng – dlng)
right-bottom: (lat – dlat, lng + dlng)
综合也就是这样进行筛选查询

  1. public List<Property> findNeighPosition(double longitude,double latitude){  
  2.         //先计算查询点的经纬度范围  
  3.         double r = 6371;//地球半径千米  
  4.         double dis = 0.5;//0.5千米距离  
  5.         double dlng =  2*Math.asin(Math.sin(dis/(2*r))/Math.cos(latitude*Math.PI/180));  
  6.         dlng = dlng*180/Math.PI;//角度转为弧度  
  7.         double dlat = dis/r;  
  8.         dlat = dlat*180/Math.PI;          
  9.         double minlat =latitude-dlat;  
  10.         double maxlat = latitude+dlat;  
  11.         double minlng = longitude -dlng;  
  12.         double maxlng = longitude + dlng;  
  13.           
  14.         String hql = "from Property where longitude>=? and longitude =<? and latitude>=? latitude=<? and state=0";  
  15.         Object[] values = {minlng,maxlng,minlat,maxlat};  
  16.           
  17.         List<Property> list = find(hql, values);  
  18.         return list;  
  19.     } 

给定两个经纬度计算方位通常涉及到地理坐标系统中的方向判断,比如两间的大致朝向。这可以使用Haversine公式或者更简单的卡西尼法则来进行计算。以下是基本步骤: 1. **角度转换**:将经度从弧度转换成角度。地球半径(例如6371公里)乘以弧度差得到平面上的距离。 2. **确定大圆距离**:如果两位于北纬45度以上的范围,需要考虑地球是个椭球体,使用反余弦函数(如acos)找出两之间的大圆航向角。 3. **确定偏航角度**:如果第一个在东边,则航向角加180度;如果在南边,则航向角取负值。这是因为地球自转方向导致的结果。 4. **结果处理**:对于最终的方向,通常会转换为常见的四个象限(如东北、东南等),或者直接给出角度数值。 这里是一个简化版的Python示例,假设经纬度是以浮数形式表示的: ```python from math import radians, cos, sin, asin, sqrt def calculate_direction(lat1, lon1, lat2, lon2): R = 6371 # 地球平均半径,单位为公里 dlat = radians(lat2 - lat1) dlon = radians(lon2 - lon1) a = sin(dlat / 2)**2 + cos(radians(lat1)) * cos(radians(lat2)) * sin(dlon / 2)**2 c = 2 * asin(sqrt(a)) direction_radians = atan2(sin(dlon) * cos(radians(lat2)), cos(radians(lat1)) * sin(radians(lat2)) - sin(radians(lat1)) * cos(radians(lat2)) * cos(dlon)) if lon1 > lon2: # 如果第一个在东边 direction_degrees = (direction_radians + pi) % (2*pi) - pi + 180 else: direction_degrees = direction_radians return round(direction_degrees, 2) # 示例 direction = calculate_direction(51.5074, -0.1278, 40.7128, -74.0060) # 假设伦敦到纽约 print(f"两地之间的大致方向是: {direction}°") ```
评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值