黄金时代 —— NAS技术学习

  • 自动化神经架构搜索方法
  • AutoML
  • NASNet
  • MnasNet
  • 发展方向:
    • NAS的搜索空间有很大的局限性。目前NAS算法仍然使用手工设计的结构和blocks,NAS仅仅是将这些blocks堆叠。人工痕迹太过明显,NAS还不能自行设计网络架构。NAS的一个发展方向是更广泛的搜索空间,寻找真正有效率的架构,当然对搜索策略和性能评估策略提出更高的要求。
    • 以google的NAS为基础,很多模型专注于优化模型的准确率而忽视底层硬件和设备,仅考虑准确率高的模型难以在移动终端部署。研究针对多任务和多目标问题的 NAS,基于移动端的多目标神经网络搜索算法,评价指标从准确率扩展到功耗、推断延时、计算复杂度、内存占用、FLOPs等指标,解决移动端实际应用问题。
    • 目前的NAS发展是以分类任务为主,在分类任务设计的模型迁移到目标检测语义分割模型中

CNN模型压缩概述

  • CNN模型压缩是从压缩模型参数的角度降低模型的计算量。
  • 人工设计轻量型神经网络结构,多是依赖Grouped Convlution、Depthwise、Pointwise、Channel Shuffle这些基本单元组成的Block,但是这些设计方法存在偶然性,不是搜索空间的最优解 … …

Deep compression 2016

  • 剪枝:剪枝就是去掉一些不必要的网络权值,只保留对网络重要的权值参数
  • 权值共享和权值量化:权值共享就是多个神经元见的连接采用同一个权值,权值量化就是用更少的比特数来表示一个权值
  • 哈夫曼编码:对权值进行哈夫曼编码能进一步的减少冗余

CNN模型压缩

  • 沿着Deep compression的思路,压缩算法可分为四类:
    • 参数修剪和共享(parameter pruning):关注于探索模型参数中冗余的部分,并尝试去除冗余和不重要的参数,如减少不重要的通道
    • 低秩分解(Low-rank factorization):使用矩阵/张量分解以估计深层 CNN 中最具信息量的参数
    • 迁移/压缩卷积滤波器(transferred/compact convolutional filters):设计了特殊结构的卷积滤波器以减少存储和计算的复杂度
    • 知识蒸馏(knowledge distillation):学习了一个精炼模型,即训练一个更加紧凑的神经网络以再现大型网络的输出结果

AutoML for Model Compression,AMC

  • 传统的模型压缩技术依赖手工设计的启发式和基于规则的策略,需要算法设计者探索较大的设计空间,在模型大小、速度和准确率之间作出权衡,而这通常是次优且耗时的。
  • 利用强化学习提供模型压缩策略。这种基于学习的压缩策略性能优于传统的基于规则的压缩策略,具有更高的压缩比,在更好地保持准确性的同时节省了人力成本。
  • 模型压缩在维度上可分为Fine-grained pruning和Coarse-grained/structured pruning
    • Fine-grained pruning主要实现剪枝权重的非重要张量,实现非常高的压缩率同时保持准确率
    • Coarse-grained pruning旨在剪枝权重张量的整个规则区域(例如,通道,行,列,块等),例如在MobileNet V1&V2

TensorFlow Lite

  • 引入post-training模型量化技术[9], 将模型大小缩小了4倍,执行速度提升了3倍!通过量化模型,开发人员还将获得降低功耗的额外好处。

NAS技术

在这里插入图片描述
参考链接!

  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值