网络结构搜索 (NAS: Network Architecture Search)

本文详细介绍了网络结构搜索(NAS)的概念,包括其在自动化搜索最优网络结构中的应用,以及如何在目标检测任务中进行NAS-FCOS的搜索。NAS-FCOS是一个快速的神经网络架构搜索方法,它在FCOS的基础上改进了FPN和检测头的结构。文章还探讨了搜索策略、搜索空间设计,并提到了DetNAS,一种用于目标检测的backbone搜索方法,它避免了昂贵的ImageNet预训练过程。此外,文章讨论了DARTS和XNAS等其他NAS方法,并展示了实验结果。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

NAS Definition

  1. 基于搜索策略,并结合约束条件 (如accuracy、latency),在搜索空间内 (set of candidate operations or blocks)探索最优网络结构、或组件结构 (如detector的backbone、FPN);
  2. 高效的NAS算法,通常是Trade-off between data-driven and experience-driven,data-driven实现高效率、自动化搜索,experience-driven减小搜索空间、降低过拟合;
  3. Proxy task: 评估搜索结果 (searched architecture);

 

NAS-FCOS: Fast Neural Architecture Search for Object Detection

 

  • Motivation:
    • 为one-stage anchor-free detector (well known FCOS)搜索FPN与detection head:
      • 如何从backbone选取特征,并如何构造FPN、输出multi-level features;
      • 当FPN features共享同一个head时,如何确定head的结构;
  • Search Space:
    • 将FCOS视作encoder-decoder架构,backbone表示encoder,FPN与head表示decoder;
    • FPN由一系列basic block (bbt)构成,对backbone提取特征C={C2, C3, C4, C5}、以及bbt输出特征执行merge操作:
      • basic block (bbt)基本结构:

      • candidate ops(搜索空间):
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值