[Codeforces1225F]Tree Factory

题意

一条链,每次可以选择一个节点 u u u使得其 f a [ f a [ u ] ] fa[fa[u]] fa[fa[u]]变成 f a [ u ] fa[u] fa[u]

其中 u u u f a [ u ] fa[u] fa[u]都不是根节点,并且操作后其他节点父亲节点都不变

你可以通过若干次这样的操作使得这一条链变成一棵树

现在给你一棵 n n n个节点的树,求能用最少的操作变出这棵树的链

2 ≤ n ≤ 1 0 5 , 0 ≤ 2\le n\le10^5,0\le 2n105,0操作数 k ≤ 1 0 6 k\le10^6 k106


题解

考虑一次对 w w w的操作
在这里插入图片描述在这里插入图片描述在这里插入图片描述

那么把树变回链的逆操作就是当前节点变成兄弟节点的父亲

考虑合并一个节点的两个子节点的子链的代价

由于每次都只能将一个点并到链上,那么把一条子链并到另外一条子链上的代价就是链长

形象一点就是这样

在这里插入图片描述在这里插入图片描述在这里插入图片描述在这里插入图片描述在这里插入图片描述在这里插入图片描述在这里插入图片描述
所以可以考虑贪心每次把短链合并到长链上

可以发现把短链并到长链上后长链上的点一定是最终链上最后的那一部分点

由于短链去合并的顺序并不影响答案,所以最终的链其实就是整棵树的 d f n dfn dfn,其中长链节点是最后一步 d f s dfs dfs

时间复杂度 O ( n + k ) O(n+k) O(n+k)

#include<bits/stdc++.h>
using namespace std;
const int N=1e5+5;
using arr=int[N];
int n,m,Ans;
arr f,fa,dep,dfn,Son;
vector<int>G[N];
void dfs(int u){
	dfn[++m]=u;
	for(auto v:G[u])
		if(v!=Son[u])
			dfs(v);
	if(Son[u])dfs(Son[u]);
}
int main(){
	scanf("%d",&n);
	for(int i=2,u;i<=n;++i){
		scanf("%d",&u);
		fa[i]=++u;
		G[u].push_back(i);
		dep[i]=dep[u]+1;
	}
	for(int i=n;i>1;--i)
		if(f[i]+1>=f[fa[i]]){
			f[fa[i]]=f[i]+1;
			Son[fa[i]]=i;
		}
	dfs(1);
	for(int i=1;i<=n;++i)printf("%d%c",dfn[i]-1," \n"[i==n]);
	for(int i=2;i<=n;++i)Ans+=dep[dfn[i-1]]-dep[fa[dfn[i]]];
	printf("%d\n",Ans);
	for(int i=2;i<=n;++i)
		for(int j=dep[dfn[i-1]]-dep[fa[dfn[i]]];j;--j)
			printf("%d ",dfn[i]-1);
return 0;
}
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值