[Bzoj2820]YY的GCD

题意(Bzoj上是权限题,所以就去Luogu罗)

接下来的p表示质数p

pna=1mb=1[gcd(a,b)=p] ∑ p ∑ a = 1 n ∑ b = 1 m [ g c d ( a , b ) = p ]

pnpa=1mpb=1[gcd(a,b)=1] ∑ p ∑ a = 1 ⌊ n p ⌋ ∑ b = 1 ⌊ m p ⌋ [ g c d ( a , b ) = 1 ]

pnpa=1mpb=1d|gcd(a,b)μ(d) ∑ p ∑ a = 1 ⌊ n p ⌋ ∑ b = 1 ⌊ m p ⌋ ∑ d | g c d ( a , b ) μ ( d )

pnpd=1μ(d)npdmpd ∑ p ∑ d = 1 ⌊ n p ⌋ μ ( d ) ⌊ n p d ⌋ ⌊ m p d ⌋

将pd设为T

nT=1p|Tμ(Tp)nTmT ∑ T = 1 n ∑ p | T μ ( T p ) ⌊ n T ⌋ ⌊ m T ⌋

nT=1f(T)nTmT ∑ T = 1 n f ( T ) ⌊ n T ⌋ ⌊ m T ⌋

其实暴力求f(T)是O(质数个数*调和级数*n) O(n)

考虑线性筛f

①: f(pkii)=p|pkiiμ(pkiip)=k(1)k1 f ( ∏ p i k i ) = ∑ p | ∏ p i k i μ ( ∏ p i k i p ) = k ∗ ( − 1 ) k − 1

②: f(pq)=f(ppkii)=(k+1)(1)k=(1)kk(1)k1=μ(q)f(q) f ( p q ) = f ( p ∏ p i k i ) = ( k + 1 ) ∗ ( − 1 ) k = ( − 1 ) k − k ∗ ( − 1 ) k − 1 = μ ( q ) − f ( q )

③: f(pkq)=a|pkqμ(pkqa) f ( p k q ) = ∑ a | p k q μ ( p k q a ) ,只有当a=p,k=2时 μ(pkqa) μ ( p k q a ) 才有值,为 μ(pq) μ ( p q )

#include<cmath>
#include<cstdio>
#include<algorithm>
#define fp(i,a,b) for(int i=a,I=b;i<=I;++i)
#define file(s) freopen(s".in","r",stdin),freopen(s".out","w",stdout)
using namespace std;
const int N=1e7+5;
typedef int arr[N];
int n=1e7;arr g,is,mu,pr;long long ans;
int main(){
    #ifndef ONLINE_JUDGE
        file("s");
    #endif
    mu[1]=1;
    fp(i,2,n){
        if(!is[i])pr[++pr[0]]=i,mu[i]=-1,g[i]=1;
        for(int j=1,x;j<=pr[0]&&(x=i*pr[j])<=n;j++){
            is[x]=1;
            if(i%pr[j])mu[x]=-mu[i],g[x]=mu[i]-g[i];
            else{mu[x]=0,g[x]=mu[i];break;}
        }
    }
    fp(i,1,n)g[i]+=g[i-1];
    int T,a,b,i,j,s,t;scanf("%d",&T);
    while(T--){
        scanf("%d%d",&a,&b);if(a>b)swap(a,b);
        i=1,j=sqrt(a);ans=0;
        for(;i<=j;++i)ans+=1ll*(a/i)*(b/i)*(g[i]-g[i-1]);
        for(t=g[i-1];i<=a;i=j+1,t=s){
            j=min(a/(a/i),b/(b/i));s=g[j];
            ans+=1ll*(a/i)*(b/i)*(s-t);
        }
        printf("%lld\n",ans);
    }
return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值