【bzoj2820】YY的GCD 莫比乌斯反演

这是一个关于数论的编程挑战,要求计算在一定范围内满足gcd(x, y)为质数的(x, y)对数。通过莫比乌斯反演和欧拉函数的方法,可以在O(n√)的时间复杂度内解决多组数据问题。" 80497789,5099465,Android Gradle manifestPlaceholders变量使用详解,"['Android开发', 'Gradle配置', '变量管理']
摘要由CSDN通过智能技术生成

Description

神犇YY虐完数论后给傻×kAc出了一题
给定N, M,求1<=x<=N, 1<=y<=M且gcd(x, y)为质数的(x, y)有多少对
kAc这种傻×必然不会了,于是向你来请教……
多组输入

Input

第一行一个整数T 表述数据组数
接下来T行,每行两个正整数,表示N, M

Output

T行,每行一个整数表示第i组数据的结果

Sample Input

2

10 10

100 100

Sample Output

30

2791

HINT

T = 10000

N, M <= 10000000

Source


跟这个一样:
【bzoj2818】Gcd 欧拉函数

不过是多组数据,每组不能O(n)做了…

所以这样:

pi<=nj<=mgcd(i,j)=p

=pi<=n/pj<=m/pe(gcd(i,j))

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值