G - 欧拉回路 -无向-度偶-connected graph

  • 图中的:所谓顶点的度(degree),就是指和该顶点相关联的边数。
  • 有向图中,度又分为入度和出度。
  •  
  • 入度 (in-degree) :以某顶点为弧头,终止于该顶点的弧的数目称为该顶点的入度。
  •  
  • 出度 (out-degree) 是指以某顶点为弧尾,起始于该顶点的弧的数目。
  •  
  • 在某顶点的入度和出度的和称为该顶点的度
  •  
  • 定义:
  • 欧拉回路:每条边恰好只走一次,并能回到出发点的路径
  •  
  • 欧拉路径:经过每一条边一次,但是不要求回到起始点
  •  
  • 欧拉回路存在性的判定:
  • 一、无向图
  • 每个顶点的度数都是偶数,则存在欧拉回路。
  • 二、有向图(所有边都是单向的)
  • 每个节顶点的入度都等于出度,则存在欧拉回路。
  • 欧拉路径存在性的判定:
  • 一。无向图
  • 一个无向图存在欧拉路径,当且仅当   该图所有顶点的度数为偶数   或者  除了两个度数为奇数外其余的全是偶数。
  • 二。有向图
  • 一个有向图存在欧拉路径,当且仅当 该图所有顶点的度数为零     或者 一个顶点的度数为1,另一个度数为-1,其他顶点的度数为0。

 

 

  • 假设要满足欧拉回路有两个条件。1.所有顶点的度数所有是偶数2.必须保证是一个联通图
  • #include<bits/stdc++.h>
    using namespace std;
    #define maxn 1555
    int n,m,num[maxn],u,v;
    vector<int>mmp[maxn];
    bool flag,vis[maxn];
    void dfs(int x)
    {
        vis[x]=1;
        int len=mmp[x].size();
        for(int i=0; i<len; i++)
            if(!vis[mmp[x][i]])
                dfs(mmp[x][i]);
    }
    int main()
    {
        while(cin>>n>>m)
        {
            flag=1;
            memset(mmp,0,sizeof(mmp));
            memset(num,0,sizeof(num));
            memset(vis,0,sizeof(vis));
            while(m--)
            {
                cin>>u>>v;
                mmp[u].push_back(v);
                mmp[v].push_back(u);
                num[u]++;
                num[v]++;
            }
            dfs(1);
            for(int i=1; i<=n; i++)
                if(num[i]%2||!vis[i])
                {
                    flag=0;
                    break;
                }
            if(flag)cout<<1<<endl;
            else cout<<0<<endl;
        }
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值