基准时间限制:1 秒 空间限制:131072 KB 分值: 5
难度:1级算法题
给出一个整数K和一个无序数组A,A的元素为N个互不相同的整数,找出数组A中所有和等于K的数对。例如K = 8,数组A:{-1,6,5,3,4,2,9,0,8},所有和等于8的数对包括(-1,9),(0,8),(2,6),(3,5)。
Input
第1行:用空格隔开的2个数,K N,N为A数组的长度。(2 <= N <= 50000,-10^9 <= K <= 10^9) 第2 - N + 1行:A数组的N个元素。(-10^9 <= A[i] <= 10^9)
Output
第1 - M行:每行2个数,要求较小的数在前面,并且这M个数对按照较小的数升序排列。 如果不存在任何一组解则输出:No Solution。
Input示例
8 9 -1 6 5 3 4 2 9 0 8
Output示例
-1 9 0 8 2 6 3 5
题解:
直接暴力时间复杂度上肯定过不去,变通。
因为所有数都不相同,所以把大于k/2的数n变成k-n的m,这样有两个m即存在,复杂度变为O(n)
//负数数据: -1 5 -2 -3 -1 1 0
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
#define INF 0x3f3f3f3f
#define CLR(a,b) memset(a,b,sizeof(a))
#define LL long long
int main()
{
int k,n;
int a[50010];
while(~scanf("%d %d",&k,&n))
{
CLR(a,0);
int flag=0;
for(int i=1;i<=n;i++)
{
scanf("%d",&a[i]);
if(a[i]>=(k/2)) //不带等于wa了一组数据,负数!!!
a[i]=k-a[i];
}
sort(a+1,a+1+n);
for(int i=1;i<n;i++)
{
if(a[i]==a[i+1])
{
flag=1;
printf("%d %d\n",a[i],k-a[i]);
}
}
if(flag==0)
printf("No Solution\n");
}
return 0;
}