一、任务目标
以邻接表为存储结构,实现连通有向图的深度优先和广度优先遍历两个遍历算法。以输入的第一个结点为起点开始遍历。
二、思路分析和代码展示
1.创建图相应的存储结构
邻接表的存储形式如下:
AdjList:数据域存放的是依次输入的顶点名称,此处为字符类型,指针域存放该顶点邻接的第一个顶点(按照输入顺序)的地址(即下一个结点的地址)。
ArcNode:数据域存放的是相应AdjList顶点所邻接的顶点在AdjList数组中对应的下标,指针域存放的则是下一个邻接顶点的地址
struct ArcNode {
int adjVex; // 顶点下标
ArcNode * nextArc; // 指针域
};
typedef struct {
char vex; // 顶点名
ArcNode * firstArc; // 第一条边
}AdjList[MVNum];
struct ALGraph {
AdjList vexs; // 顶点数组
int vexNum, arcNum; // 顶点总数 和 边总数
};
此处用邻接表描述图包括了三个部分:顶点数组、顶点总数、边总数
2.创建邻接表
// 创建邻接表
void CreateAL(ALGraph &G, char a, char b) {
for(int i = 0; i < G.vexNum; i++) {
if(G.vexs[i].vex == a) {
for(int j = 0; j < G.vexNum; j++) {
if(G.vexs[j].vex == b) {
// 创建新结点
ArcNode * temp = new ArcNode;
temp->adjVex = j;
temp->nextArc = NULL;
// 遍历对应链表
ArcNode * p = G.vexs[i].firstArc;
if(p != NULL) {
while(p->nextArc != NULL) {
p = p->nextArc;
}
p->nextArc = temp;
} else {
G.vexs[i].firstArc = temp;
}
}
}
}
}
}
以上代码目的在于通过输入一条边的两个顶点,实现每个顶点和其邻接点之间的连接:
因为是有向图,所以通过第一个输入的顶点a确定其在AdjList中的位置,再确定第二个输入的顶点b在AdjList中的下标,填充创建的新结点的数据域。
在以上过程中设置一个遍历指针p,用于寻找到a所对应的链表的尾部,实现新结点的尾插。
3.生成有向图
// 生成有向图
void CreateUDN(ALGraph &G) {
cout<<"请输入顶点个数:";
cin>>G.vexNum;
cout<<"请输入顶点名称:";
char c;
for(int i = 0; i < G.vexNum; i++) {
cin>>c;
G.vexs[i].vex = c;
G.vexs[i].firstArc = NULL;
}
cout<<"请输入边数:";
cin>>G.arcNum;
cout<<"请输入边:"<<endl;
char v1, v2;
for(int i = 0; i < G.arcNum; i++) {
cin>>v1>>v2;
CreateAL(G, v1, v2);
}
}
4.打印邻接表
// 打印邻接表
void PrintAL(ALGraph G) {
for(int i = 0; i < G.vexNum; i++) {
ArcNode * temp = G.vexs[i].firstArc;
cout<<G.vexs[i].vex;
while(temp != NULL) {
cout<<"-->"<<temp->adjVex;
temp = temp->nextArc;
}
cout<<endl;
}
}
生成图后,打印相应的邻接表用于检验
5.遍历图
例图情况下的深度优先和广度优先遍历结果如上
5.1 深度优先遍历图
// 深度优先
void DFS(ALGraph G, int i, bool visited[]) {
ArcNode * p;
// 访问顶点
cout<<G.vexs[i].vex<<" ";
visited[i] = true; // 标记为已访问
for(p = G.vexs[i].firstArc; p != NULL; p = p->nextArc) {
if(!visited[p->adjVex]) { // 如果没被访问过
DFS(G, p->adjVex, visited); // 递归 来到AdjList再次开始
}
}
}
// 深度优先遍历有向图
void DFSTraverse(ALGraph G, bool visited[]) {
// 初始化全部顶点的访问情况 使用数组
for(int i = 0; i < G.vexNum; i++) {
visited[i] = false;
}
for(int i = 0; i < G.vexNum; i++) { // 防止有连通分量 非连通图
if(!visited[i]) {
// 如果顶点未被访问 则从该顶点开始遍历(说明属于一个连通分量)
DFS(G, i, visited);
}
}
}
5.2 广度优先遍历图
使用广度优先遍历图,需要用到队列。利用其可以弹出队头的特性,在同一层顶点被访问完后开启下一层的访问。
// 队列存储结构
struct QueueNode {
int adjVex;
QueueNode * next;
};
// 队列
struct Queue {
QueueNode * head;
QueueNode * tail;
};
// 初始化队列
void InitQueue(Queue* &Q) {
Q->head = NULL;
Q->tail = NULL;
}
// 向队列中插入元素 (插入在队尾)
void QueuePush(Queue* &Q, int x) {
// 创建新结点
QueueNode * temp = new QueueNode;
temp->adjVex = x;
temp->next = NULL;
if(Q->head == NULL) {
Q->head = Q->tail = temp; // 队列为空时 头尾指针共同指向第一个放入的结点
} else {
Q->tail->next = temp;
Q->tail = Q->tail->next; // tail后移
}
}
// 弹出队头元素
int QueuePopHead(Queue* &Q) {
int head = Q->head->adjVex;
QueueNode * temp = Q->head;
Q->head = Q->head->next; // head后移
delete temp; // 清除该空间
return head;
}
// 广度优先
void BFS(ALGraph G, int i, bool visited[], Queue*& Q) {
ArcNode * p = G.vexs[i].firstArc;
cout<<G.vexs[i].vex<<" ";
visited[i] = true; // 标记为已访问
QueuePush(Q, i); // 将对应下标放入队列中
while (Q->head != NULL) { // 如果队列非空
int head = QueuePopHead(Q); // 取出队头元素
p = G.vexs[head].firstArc;
while (p != NULL) { // 用于遍历每个AdjList中元素对应的链表
if (!visited[p->adjVex]) {
cout<<G.vexs[p->adjVex].vex<<" ";
visited[p->adjVex] = true; // 标记为访问 但是不弹出
QueuePush(Q, p->adjVex);
}
p = p->nextArc; // p后移
}
}
}
// 广度优先遍历有向图
void BFSTraverse(ALGraph G, bool visited[]) {
// 初始化全部顶点的访问情况 使用数组
for (int i = 0; i < G.vexNum; i++) {
visited[i] = false;
}
for (int i = 0; i < G.vexNum; i++) {
if (!visited[i]) {
// 如果顶点未被访问 则从该顶点开始遍历(说明属于一个连通分量)
Queue * Q = new Queue; // 创建队列
InitQueue(Q); // 初始化队列
BFS(G, i, visited, Q);
}
}
}
以另一简单例子解析以上代码实现的流程如下:
6.完整代码
#include <iostream>
#define MVNum 20 // 最大顶点数
using namespace std;
struct ArcNode {
int adjVex; // 顶点下标
ArcNode * nextArc; // 指针域
};
typedef struct {
char vex; // 顶点名
ArcNode * firstArc; // 第一条边
}AdjList[MVNum];
struct ALGraph {
AdjList vexs; // 顶点数组
int vexNum, arcNum; // 顶点总数 和 边总数
};
// 队列存储结构
struct QueueNode {
int adjVex;
QueueNode * next;
};
// 队列
struct Queue {
QueueNode * head;
QueueNode * tail;
};
// 初始化队列
void InitQueue(Queue* &Q) {
Q->head = NULL;
Q->tail = NULL;
}
// 向队列中插入元素 (插入在队尾)
void QueuePush(Queue* &Q, int x) {
// 创建新结点
QueueNode * temp = new QueueNode;
temp->adjVex = x;
temp->next = NULL;
if(Q->head == NULL) {
Q->head = Q->tail = temp; // 队列为空时 头尾指针共同指向第一个放入的结点
} else {
Q->tail->next = temp;
Q->tail = Q->tail->next; // tail后移
}
}
// 弹出队头元素
int QueuePopHead(Queue* &Q) {
int head = Q->head->adjVex;
QueueNode * temp = Q->head;
Q->head = Q->head->next; // head后移
delete temp; // 清除该空间
return head;
}
// 创建邻接表
void CreateAL(ALGraph &G, char a, char b) {
for(int i = 0; i < G.vexNum; i++) {
if(G.vexs[i].vex == a) {
for(int j = 0; j < G.vexNum; j++) {
if(G.vexs[j].vex == b) {
// 创建新结点
ArcNode * temp = new ArcNode;
temp->adjVex = j;
temp->nextArc = NULL;
// 遍历对应链表
ArcNode * p = G.vexs[i].firstArc;
if(p != NULL) {
while(p->nextArc != NULL) {
p = p->nextArc;
}
p->nextArc = temp;
} else {
G.vexs[i].firstArc = temp;
}
}
}
}
}
}
// 生成有向图
void CreateUDN(ALGraph &G) {
cout<<"请输入顶点个数:";
cin>>G.vexNum;
cout<<"请输入顶点名称:";
char c;
for(int i = 0; i < G.vexNum; i++) {
cin>>c;
G.vexs[i].vex = c;
G.vexs[i].firstArc = NULL;
}
cout<<"请输入边数:";
cin>>G.arcNum;
cout<<"请输入边:"<<endl;
char v1, v2;
for(int i = 0; i < G.arcNum; i++) {
cin>>v1>>v2;
CreateAL(G, v1, v2);
}
}
// 打印邻接表
void PrintAL(ALGraph G) {
for(int i = 0; i < G.vexNum; i++) {
ArcNode * temp = G.vexs[i].firstArc;
cout<<G.vexs[i].vex;
while(temp != NULL) {
cout<<"-->"<<temp->adjVex;
temp = temp->nextArc;
}
cout<<endl;
}
}
// 深度优先
void DFS(ALGraph G, int i, bool visited[]) {
ArcNode * p;
// 访问顶点
cout<<G.vexs[i].vex<<" ";
visited[i] = true; // 标记为已访问
for(p = G.vexs[i].firstArc; p != NULL; p = p->nextArc) {
if(!visited[p->adjVex]) { // 如果没被访问过
DFS(G, p->adjVex, visited); // 递归
}
}
}
// 深度优先遍历有向图
void DFSTraverse(ALGraph G, bool visited[]) {
// 初始化全部顶点的访问情况 使用数组
for(int i = 0; i < G.vexNum; i++) {
visited[i] = false;
}
for(int i = 0; i < G.vexNum; i++) { // 防止有连通分量 非连通图
if(!visited[i]) {
// 如果顶点未被访问 则从该顶点开始遍历(说明属于一个连通分量)
DFS(G, i, visited);
}
}
}
// 广度优先
void BFS(ALGraph G, int i, bool visited[], Queue*& Q) {
ArcNode * p = G.vexs[i].firstArc;
cout<<G.vexs[i].vex<<" ";
visited[i] = true; // 标记为已访问
QueuePush(Q, i); // 将对应下标放入队列中
while (Q->head != NULL) {
int head = QueuePopHead(Q);
p = G.vexs[head].firstArc;
while (p != NULL) {
if (!visited[p->adjVex]) {
cout<<G.vexs[p->adjVex].vex<<" ";
visited[p->adjVex] = true;
QueuePush(Q, p->adjVex);
}
p = p->nextArc; // p后移
}
}
}
// 广度优先遍历有向图
void BFSTraverse(ALGraph G, bool visited[]) {
// 初始化全部顶点的访问情况 使用数组
for (int i = 0; i < G.vexNum; i++) {
visited[i] = false;
}
for (int i = 0; i < G.vexNum; i++) {
if (!visited[i]) {
// 如果顶点未被访问 则从该顶点开始遍历(说明属于一个连通分量)
Queue * Q = new Queue; // 创建队列
InitQueue(Q); // 初始化队列
BFS(G, i, visited, Q);
}
}
}
int main() {
ALGraph G;
CreateUDN(G);
cout<<"打印邻接表:"<<endl;
PrintAL(G);
bool visited[G.vexNum];
cout<<"深度优先遍历有向图:"<<endl;
DFSTraverse(G, visited);
cout<<endl;
cout<<"广度优先遍历有向图:"<<endl;
BFSTraverse(G, visited);
return 0;
}
三、运行结果
1、
验证该例结果如下:
2、
验证该例结果如下: