图的遍历 c++

一、任务目标

以邻接表为存储结构,实现连通有向图的深度优先和广度优先遍历两个遍历算法。以输入的第一个结点为起点开始遍历。

二、思路分析和代码展示

1.创建图相应的存储结构

邻接表的存储形式如下:
在这里插入图片描述
AdjList:数据域存放的是依次输入的顶点名称,此处为字符类型,指针域存放该顶点邻接的第一个顶点(按照输入顺序)的地址(即下一个结点的地址)。
ArcNode:数据域存放的是相应AdjList顶点所邻接的顶点在AdjList数组中对应的下标,指针域存放的则是下一个邻接顶点的地址

struct ArcNode {
	int adjVex; // 顶点下标
	ArcNode * nextArc; // 指针域 
}; 

typedef struct {
	char vex; // 顶点名 
	ArcNode * firstArc; // 第一条边 
}AdjList[MVNum];

struct ALGraph {
	AdjList vexs; // 顶点数组 
	int vexNum, arcNum; // 顶点总数 和 边总数 
};

此处用邻接表描述图包括了三个部分:顶点数组、顶点总数、边总数

2.创建邻接表

// 创建邻接表 
void CreateAL(ALGraph &G, char a, char b) {
	for(int i = 0; i < G.vexNum; i++) {
		if(G.vexs[i].vex == a) {
			for(int j = 0; j < G.vexNum; j++) {
				if(G.vexs[j].vex == b) {
					// 创建新结点 
					ArcNode * temp = new ArcNode;
					temp->adjVex = j;
					temp->nextArc = NULL;
					// 遍历对应链表 
					ArcNode * p = G.vexs[i].firstArc;
					if(p != NULL) {
						while(p->nextArc != NULL) {
							p = p->nextArc;
						}
						p->nextArc = temp;
					} else {
						G.vexs[i].firstArc = temp;  
					}
				}
			}
		}
	}
} 

以上代码目的在于通过输入一条边的两个顶点,实现每个顶点和其邻接点之间的连接:
因为是有向图,所以通过第一个输入的顶点a确定其在AdjList中的位置,再确定第二个输入的顶点b在AdjList中的下标,填充创建的新结点的数据域。
在以上过程中设置一个遍历指针p,用于寻找到a所对应的链表的尾部,实现新结点的尾插。

3.生成有向图

// 生成有向图
void CreateUDN(ALGraph &G) {
	cout<<"请输入顶点个数:";
	cin>>G.vexNum;
	cout<<"请输入顶点名称:";
	char c;
	for(int i = 0; i < G.vexNum; i++) {
		cin>>c;
		G.vexs[i].vex = c; 
		G.vexs[i].firstArc = NULL;
	}
	cout<<"请输入边数:";
	cin>>G.arcNum;
	cout<<"请输入边:"<<endl;
	char v1, v2;
	for(int i = 0; i < G.arcNum; i++) {
		cin>>v1>>v2;
		CreateAL(G, v1, v2);
	}
}  

4.打印邻接表

// 打印邻接表 
void PrintAL(ALGraph G) {
	for(int i = 0; i < G.vexNum; i++) {
		ArcNode * temp = G.vexs[i].firstArc;
		cout<<G.vexs[i].vex;
		while(temp != NULL) {
			cout<<"-->"<<temp->adjVex;
			temp = temp->nextArc;
		}
		cout<<endl;
	}
}

生成图后,打印相应的邻接表用于检验

5.遍历图

在这里插入图片描述
例图情况下的深度优先和广度优先遍历结果如上

5.1 深度优先遍历图
// 深度优先
void DFS(ALGraph G, int i, bool visited[]) {
	ArcNode * p;
	// 访问顶点
	cout<<G.vexs[i].vex<<" ";
	visited[i] = true; // 标记为已访问
	for(p = G.vexs[i].firstArc; p != NULL; p = p->nextArc) {
		if(!visited[p->adjVex]) { // 如果没被访问过 
			DFS(G, p->adjVex, visited); // 递归 来到AdjList再次开始
		}
	}	 
} 

// 深度优先遍历有向图
void DFSTraverse(ALGraph G, bool visited[]) {
	// 初始化全部顶点的访问情况 使用数组 
	for(int i = 0; i < G.vexNum; i++) {
		visited[i] = false;
	}
	for(int i = 0; i < G.vexNum; i++) { // 防止有连通分量 非连通图 
		if(!visited[i]) {
			// 如果顶点未被访问 则从该顶点开始遍历(说明属于一个连通分量)
			DFS(G, i, visited); 
		}
	}
} 

5.2 广度优先遍历图

使用广度优先遍历图,需要用到队列。利用其可以弹出队头的特性,在同一层顶点被访问完后开启下一层的访问。

// 队列存储结构 
struct QueueNode {
	int adjVex;
	QueueNode * next;
};

// 队列 
struct Queue {
	QueueNode * head;
	QueueNode * tail;
};

// 初始化队列
void InitQueue(Queue* &Q) {  
	Q->head = NULL;
	Q->tail = NULL;
} 

// 向队列中插入元素 (插入在队尾) 
void QueuePush(Queue* &Q, int x) {
	// 创建新结点 
	QueueNode * temp = new QueueNode;
	temp->adjVex = x;
	temp->next = NULL;
	if(Q->head == NULL) {
		Q->head = Q->tail = temp; // 队列为空时 头尾指针共同指向第一个放入的结点 
	} else {
		Q->tail->next = temp;
		Q->tail = Q->tail->next; // tail后移 
	}
} 

// 弹出队头元素
int QueuePopHead(Queue* &Q) {
	int head = Q->head->adjVex;
	QueueNode * temp = Q->head;
	Q->head = Q->head->next; // head后移
	delete temp; // 清除该空间 
	return head;
}
// 广度优先
void BFS(ALGraph G, int i, bool visited[], Queue*& Q) {
    ArcNode * p = G.vexs[i].firstArc;
    cout<<G.vexs[i].vex<<" ";
    visited[i] = true; // 标记为已访问
    QueuePush(Q, i);   // 将对应下标放入队列中
    while (Q->head != NULL) { // 如果队列非空
        int head = QueuePopHead(Q); // 取出队头元素
        p = G.vexs[head].firstArc;
        while (p != NULL) { // 用于遍历每个AdjList中元素对应的链表
            if (!visited[p->adjVex]) {
                cout<<G.vexs[p->adjVex].vex<<" ";
                visited[p->adjVex] = true; // 标记为访问 但是不弹出
                QueuePush(Q, p->adjVex);
            }
            p = p->nextArc; // p后移
        }
    }
}

// 广度优先遍历有向图
void BFSTraverse(ALGraph G, bool visited[]) {
    // 初始化全部顶点的访问情况 使用数组
    for (int i = 0; i < G.vexNum; i++) {
        visited[i] = false;
    }
    for (int i = 0; i < G.vexNum; i++) {
        if (!visited[i]) {
            // 如果顶点未被访问 则从该顶点开始遍历(说明属于一个连通分量)
            Queue * Q = new Queue; // 创建队列
            InitQueue(Q); // 初始化队列
            BFS(G, i, visited, Q);
        }
    }
}

以另一简单例子解析以上代码实现的流程如下:
在这里插入图片描述

6.完整代码

#include <iostream>
#define MVNum 20  // 最大顶点数 
using namespace std;

struct ArcNode {
	int adjVex; // 顶点下标
	ArcNode * nextArc; // 指针域 
}; 

typedef struct {
	char vex; // 顶点名 
	ArcNode * firstArc; // 第一条边 
}AdjList[MVNum];

struct ALGraph {
	AdjList vexs; // 顶点数组 
	int vexNum, arcNum; // 顶点总数 和 边总数 
};

// 队列存储结构 
struct QueueNode {
	int adjVex;
	QueueNode * next;
};

// 队列 
struct Queue {
	QueueNode * head;
	QueueNode * tail;
};

// 初始化队列
void InitQueue(Queue* &Q) { 
	Q->head = NULL;
	Q->tail = NULL;
} 

// 向队列中插入元素 (插入在队尾) 
void QueuePush(Queue* &Q, int x) {
	// 创建新结点 
	QueueNode * temp = new QueueNode;
	temp->adjVex = x;
	temp->next = NULL;
	if(Q->head == NULL) {
		Q->head = Q->tail = temp; // 队列为空时 头尾指针共同指向第一个放入的结点 
	} else {
		Q->tail->next = temp;
		Q->tail = Q->tail->next; // tail后移 
	}
} 

// 弹出队头元素
int QueuePopHead(Queue* &Q) {
	int head = Q->head->adjVex;
	QueueNode * temp = Q->head;
	Q->head = Q->head->next; // head后移
	delete temp; // 清除该空间 
	return head;
}

// 创建邻接表 
void CreateAL(ALGraph &G, char a, char b) {
	for(int i = 0; i < G.vexNum; i++) {
		if(G.vexs[i].vex == a) {
			for(int j = 0; j < G.vexNum; j++) {
				if(G.vexs[j].vex == b) {
					// 创建新结点 
					ArcNode * temp = new ArcNode;
					temp->adjVex = j;
					temp->nextArc = NULL;
					// 遍历对应链表 
					ArcNode * p = G.vexs[i].firstArc;
					if(p != NULL) {
						while(p->nextArc != NULL) {
							p = p->nextArc;
						}
						p->nextArc = temp;
					} else {
						G.vexs[i].firstArc = temp; 
					}
				}
			}
		}
	}
} 

// 生成有向图
void CreateUDN(ALGraph &G) {
	cout<<"请输入顶点个数:";
	cin>>G.vexNum;
	cout<<"请输入顶点名称:";
	char c;
	for(int i = 0; i < G.vexNum; i++) {
		cin>>c;
		G.vexs[i].vex = c; 
		G.vexs[i].firstArc = NULL;
	}
	cout<<"请输入边数:";
	cin>>G.arcNum;
	cout<<"请输入边:"<<endl;
	char v1, v2;
	for(int i = 0; i < G.arcNum; i++) {
		cin>>v1>>v2;
		CreateAL(G, v1, v2);
	}
}  

// 打印邻接表 
void PrintAL(ALGraph G) {
	for(int i = 0; i < G.vexNum; i++) {
		ArcNode * temp = G.vexs[i].firstArc;
		cout<<G.vexs[i].vex;
		while(temp != NULL) {
			cout<<"-->"<<temp->adjVex;
			temp = temp->nextArc;
		}
		cout<<endl;
	}
}


// 深度优先
void DFS(ALGraph G, int i, bool visited[]) {
	ArcNode * p;
	// 访问顶点
	cout<<G.vexs[i].vex<<" ";
	visited[i] = true; // 标记为已访问
	for(p = G.vexs[i].firstArc; p != NULL; p = p->nextArc) {
		if(!visited[p->adjVex]) { // 如果没被访问过 
			DFS(G, p->adjVex, visited); // 递归 
		}
	}	 
} 

// 深度优先遍历有向图
void DFSTraverse(ALGraph G, bool visited[]) {
	// 初始化全部顶点的访问情况 使用数组 
	for(int i = 0; i < G.vexNum; i++) {
		visited[i] = false;
	}
	for(int i = 0; i < G.vexNum; i++) { // 防止有连通分量 非连通图 
		if(!visited[i]) {
			// 如果顶点未被访问 则从该顶点开始遍历(说明属于一个连通分量)
			DFS(G, i, visited); 
		}
	}
} 

// 广度优先
void BFS(ALGraph G, int i, bool visited[], Queue*& Q) {
    ArcNode * p = G.vexs[i].firstArc;
    cout<<G.vexs[i].vex<<" ";
    visited[i] = true; // 标记为已访问
    QueuePush(Q, i);   // 将对应下标放入队列中
    while (Q->head != NULL) {
        int head = QueuePopHead(Q);
        p = G.vexs[head].firstArc;
        while (p != NULL) {
            if (!visited[p->adjVex]) {
                cout<<G.vexs[p->adjVex].vex<<" ";
                visited[p->adjVex] = true;
                QueuePush(Q, p->adjVex);
            }
            p = p->nextArc; // p后移
        }
    }
}

// 广度优先遍历有向图
void BFSTraverse(ALGraph G, bool visited[]) {
    // 初始化全部顶点的访问情况 使用数组
    for (int i = 0; i < G.vexNum; i++) {
        visited[i] = false;
    }
    for (int i = 0; i < G.vexNum; i++) {
        if (!visited[i]) {
            // 如果顶点未被访问 则从该顶点开始遍历(说明属于一个连通分量)
            Queue * Q = new Queue; // 创建队列
            InitQueue(Q); // 初始化队列
            BFS(G, i, visited, Q);
        }
    }
}

int main() {
	ALGraph G;
	CreateUDN(G);
	cout<<"打印邻接表:"<<endl;
	PrintAL(G);
	bool visited[G.vexNum];
	cout<<"深度优先遍历有向图:"<<endl; 
	DFSTraverse(G, visited);
	cout<<endl;
	cout<<"广度优先遍历有向图:"<<endl;
	BFSTraverse(G, visited);
	return 0;
}

三、运行结果

1、
在这里插入图片描述
验证该例结果如下:
在这里插入图片描述
2、
在这里插入图片描述
验证该例结果如下:
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值