【混合dp I】Partitioning by Palindromes

版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/Beawin/article/details/79968074

题目来源:


题目大意:
对于给定的字符串,找出里面回文子串最小的总数(也就是说单个回文子串要尽可能长)
规定单独一个字符可成为一个回文子串

解题思路:
dp,一维。
一开始习惯开了二维最后判断超麻烦,仔细想想其实一维就行了啊x

dp[i]:表示前i个字符里回文子串数最小的总数
状态转移方程:dp[i] = min(dp[i], dp[j-1]+1)
一开始dp[i]里的数值为i,即前i个字符里最多有i个回文子串
每次j都从字符的头开始,由于j-1,于是在字符串前应再加一个字符保证字符串的头下标为1,也方便计数。
虽然从0开始j-1奇怪地没出现越界(应该是j-1访问到s数组的最后去了吧),但结果微妙地不对呢x
AC代码:
#include <iostream>
#include <algorithm>
#include <queue>
#include <vector>
#include <set>
#include <stack>
#include <map>
#include <string>
#include <utility>
#include <string>
#include <cstdio>
#include <cmath>
#include <cstring>
#include <list>
#define N 1010

using namespace std;

char s[N];
int dp[N];

int check(int i, int j)
{
    for (int k=j, g=i;k<g;k++,g--)
    {
        if (s[k]!=s[g])
        {
            return 0;
        }
    }
    return 1;
}

int main()
{
    int t;
    scanf("%d",&t);
    while (t--)
    {
        memset(dp,0,sizeof(dp));
        strcpy(s,"0");
        char t[N];
        scanf("%s",t);
        strcat(s,t);
        int len = strlen(s);
        for (int i=1;i<len;i++)
        {
            dp[i] = i;
            for (int j=1;j<=i;j++)
            {
                if (check(i, j))
                {
                    dp[i] = min(dp[i],dp[j-1]+1);
                }
            }
        }
        printf("%d\n",dp[len-1]);
    }
    return 0;
}

阅读更多
想对作者说点什么?

博主推荐

换一批

没有更多推荐了,返回首页