奈式准则与香农定理

1. 奈奎斯特定理

奈奎斯特(Nyquist)定理:又称奈氏准则,指在理想低通(无噪声,带宽受限)的信道中,极限码元传输率为 2W Baud。其中,W是理想低通信道的带宽,单位为Hz。

对于奈氏准则,可得以下结论:

1)码元传输的速率是有限的;

2)信道的频带越宽,就可以用更高的速率进行码元的有效传输;

3)奈氏准则给出了码元传输速率的限制,并没有对信息传输速率给出限制;

4)要提高数据的传输速率,要采用多元的调制方法。

2. 香农定理

信噪比(S/N):信号的平均功率和噪声的平均功率之比,信噪比 = 10㏒10(S/N)(单位:dB),其中,㏒10指以10为底的对数。

香农(Shannon)定理:在带宽受限且有噪声的信道中,为了不产生误差,信息的传输速率有上限值。

对于香农定理,可以得出以下结论:

1)信道的带宽或信噪比越大,则信息的极限传输速率越高;

2)对一定的带宽和一定的信噪比,信息传输速率就确定了;

3)只要信息的传输速率低于信道的传输速率,就一定能找到某种方法来实现无差错的传输

4)香农定理得出的为极限传输速率,实际信道能达到的传输速率要比它低不少

5)若带宽W或信噪比 S/N 没有上限,信道的极限信息传输速率也就没有上限。

3. 一个栗子

二进制信号在信噪比为127:1的4kHz信道上传输,最大数据速率可达到多少?

奈氏准则:2×4k×㏒2 = 8000 b/s

香农定理:4k ×㏒(1 + 127)  = 28000 b/s

那个小,选哪个,所以最大数据传输速率为 8000 b/s。

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值