机器学习
文章平均质量分 86
Bee_Darker
不积跬步,无以至千里;
不积小流,无以成大海
展开
-
台大林轩田机器学习基石学习笔记(二):Learning to Answer Yes/No
在本次学习中,Hsuan-Tien Lin通过银行发信用卡的例子引入感知器假设集的概念,进一步分析之后,给出感知器算法PLA,并总结了PLA的使用条件和优缺点,最后给出一种改进算法—Pocket Algorithm,即口袋算法。下面开始第二节课的笔记:Learning to Answer Yes/No。文章目录一、Perceptron Hypothesis Set二、Perceptron L...原创 2019-10-12 15:39:24 · 332 阅读 · 0 评论 -
机器学习学习手札(一)绪论
1.引言计算机系统中,经验通常以数据形式存在机器学习的任务:从数据中产生模型形式化定义:假设用P来评估计算机程序在某任务类T上的性能,某一个程序通过利用经验E在T中任务上获得性能改善,则说关于T和P,对E进行了学习。2.基本术语属性 & 记录(色泽=青绿;根蒂=蜷缩;敲声=浊响),(色泽=乌黑;根蒂:稍蜷;敲声=闷), (色泽=浅自;根蒂 硬挺;敲声=清脆),…...原创 2018-11-09 22:14:06 · 249 阅读 · 0 评论 -
机器学习学习手札(二)模型评估与选择(上)
1.经验误差与过拟合机器学习的目的,从训练样本中尽可能学出适用于所有潜在样本的"普遍规律"。错误率 error rate把分类错误的样本数占样本总数的比例称为"错误率".即如果在 m 个样本中有 a 个样本分类错误,则错误率 E= a/m;精度(accuracy) = 1 - a/m.误差把机器学习的实际预测输出与样本的真实输出之间的差异称为"误差" (error)学习...原创 2018-11-11 22:33:25 · 362 阅读 · 0 评论 -
台大林轩田机器学习基石学习笔记(一):The Learning Problem
台湾大学林轩田《机器学习基石》课程的学习笔记原创 2019-10-05 14:42:38 · 387 阅读 · 0 评论