【人工智能 学习总结】第六章 机器学习(1)

本文是关于机器学习的学习总结,介绍了机器学习的基本概念、发展历史、学习系统模型,重点讲解了记忆学习、归纳学习,特别是示例学习的原理和方法,并探讨了决策树学习的定义和应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

6.1概述

6.1.1机器学习的概念

机器学习的定义是基于人的学习的,由于学习没有统一的定义,机器学习也没法给出严格的定义

从学科角度来讲,机器学习是研究如何让计算机来模拟人类学习活动的一门学科

机器学习的主要研究内容:

认知模型的研究

    主要目的是要通过对人类学习机理的研究和模拟,从根本上解决机器学习方面存在的种种问题

理论学习的研究

     主要目的是要从理论上探索各种可能的学习方法,并建立起独立于具体应用领域的学习算法

面向任务的研究

    主要目的是要根据特定任务的要求,建立相应的学习系统

6.1.2机器学习的发展历史

(1)热烈时期
20世纪50 年代中叶到 60 年代初期,最具有代表性的工作是罗森勃拉特 1957 年提出的感知器模型。该时期研究的是“没有知识”的学习,其主要研究目标是各种自组织系统和自适应系统
(2)冷静时期
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值