AVL树【C++】

AVL树的概念

二叉搜索树虽可以缩短查找的效率,但如果数据有序或接近有序二叉搜索树将退化为单支树,查 找元素相当于在顺序表中搜索元素,效率低下。因此,两位俄罗斯的数学家G.M.Adelson-Velskii 和E.M.Landis在1962年 发明了一种解决上述问题的方法:当向二叉搜索树中插入新结点后,如果能保证每个结点的左右子树高度之差的绝对值不超过1(需要对树中的结点进行调整),即可降低树的高度,从而减少平均搜索长度。

一棵AVL树或者是空树,或者是具有以下性质的二叉搜索树:

  • 它的左右子树都是AVL树
  • 左右子树高度之差(简称平衡因子)的绝对值不超过1(-1/0/1)

如果一棵二叉搜索树是高度平衡的,它就是AVL树。如果它有n个结点,其高度可保持在 $O(log_2 n)$,搜索时间复杂度O($log_2 n$)。

AVL树不一定有平衡因子,使用平衡因子只是他的一种实现方式。

AVL树节点的定义

template<class T>
struct AVLTreeNode
{
 AVLTreeNode(const T& data)
     : _pLeft(nullptr), _pRight(nullptr), _pParent(nullptr)
 , _data(data), _bf(0)
 {}
 AVLTreeNode<T>* _pLeft;   // 该节点的左孩子
 AVLTreeNode<T>* _pRight;  // 该节点的右孩子
 AVLTreeNode<T>* _pParent; // 该节点的双亲
 T _data;
 int _bf;                  // 该节点的平衡因子
};

AVL树的插入

步骤:

1.更新平衡因子

2.如果更新完以后,平衡因子没有出现问题(|bf|<=1,平衡结构没有受到影响,不需要处理

3.如果更新完以后,平衡出现问题(|bf|>1,平衡结构受到影响,需要处理(旋转)

  插入新增节点,会影响祖先的平衡因子(全部或者部分)

  1.cur == parent->right parent->bf++

  2.cur == parent->left parent->bf--

  什么决定了是否要继续往上爷爷节点更新?

  取决于parent所在子树的高度是否变化。变了,继续更新,不变则不再更新

    a.parent->bf == 1 || parent ->bf == -1     ->      parent所在子树变了,继续更新

    为什么?说明插入前parent->bf == 0,说明插入前左右两边高度相等,现在有一边高1,说明parent一边高一边低,高度变了

    b.parent->bf == 2 || parent ->bf == -2    ->parent所在的子树不平衡,需要处理这棵子树(旋转处理)。

    c.parent->bf == 0,parent所在的子树高度不变,不用继续往上更新。这一次插入结束,为什么呢?

-> 说明插入前是parent->bf == 1 or -1 ,插入之前一边高,一边低,插入节点填上矮的那边,它的高度不变。

 

bool Insert(const T& data)
{
    // 1. 先按照二叉搜索树的规则将节点插入到AVL树中
    // ...
    
    // 2. 新节点插入后,AVL树的平衡性可能会遭到破坏,此时就需要更新平衡因子,并检测是否
//破坏了AVL树
    //   的平衡性
    
 /*
 pCur插入后,pParent的平衡因子一定需要调整,在插入之前,pParent
 的平衡因子分为三种情况:-1,0, 1, 分以下两种情况:
  1. 如果pCur插入到pParent的左侧,只需给pParent的平衡因子-1即可
  2. 如果pCur插入到pParent的右侧,只需给pParent的平衡因子+1即可
  
 此时:pParent的平衡因子可能有三种情况:0,正负1, 正负2
  1. 如果pParent的平衡因子为0,说明插入之前pParent的平衡因子为正负1,插入后被调整
成0,此时满足
     AVL树的性质,插入成功
  2. 如果pParent的平衡因子为正负1,说明插入前pParent的平衡因子一定为0,插入后被更
新成正负1,此
     时以pParent为根的树的高度增加,需要继续向上更新
  3. 如果pParent的平衡因子为正负2,则pParent的平衡因子违反平衡树的性质,需要对其进
行旋转处理
 */
while (pParent)
 {
        // 更新双亲的平衡因子
 if (pCur == pParent->_pLeft)
 pParent->_bf--;
 else
 pParent->_bf++;
 // 更新后检测双亲的平衡因子
 if (0 == pParent->_bf)
       {    
            break;
       }
 else if (1 == pParent->_bf || -1 == pParent->_bf)
 {
              // 插入前双亲的平衡因子是0,插入后双亲的平衡因为为1 或者 -1 ,说明以双亲为根的二叉树
              // 的高度增加了一层,因此需要继续向上调整
 pCur = pParent;
 pParent = pCur->_pParent;
 }
 else
 {
 // 双亲的平衡因子为正负2,违反了AVL树的平衡性,需要对以pParent
 // 为根的树进行旋转处理
if(2 == pParent->_bf)
 {
    // ...
 }
 else
{
                  // ...
             }
 }
 }
 return true;
}

AVL树的旋转

如果在一棵原本是平衡的AVL树中插入一个新节点,可能造成不平衡,此时必须调整树的结构, 使之平衡化。根据节点插入位置的不同,AVL树的旋转分为四种:

1. 新节点插入较高左子树的左侧---左左:右单旋

 

/*
  上图在插入前,AVL树是平衡的,新节点插入到30的左子树(注意:此处不是左孩子)中,30左
子树增加
  了一层,导致以60为根的二叉树不平衡,要让60平衡,只能将60左子树的高度减少一层,右子
树增加一层,
  即将左子树往上提,这样60转下来,因为60比30大,只能将其放在30的右子树,而如果30有
右子树,右子树根的值一定大于30,小于60,只能将其放在60的左子树,旋转完成后,更新节点
的平衡因子即可。在旋转过程中,有以下几种情况需要考虑:
  1. 30节点的右孩子可能存在,也可能不存在
  2. 60可能是根节点,也可能是子树
     如果是根节点,旋转完成后,要更新根节点
     如果是子树,可能是某个节点的左子树,也可能是右子树
     

*/
void _RotateR(PNode pParent)
{
    // pSubL: pParent的左孩子
    // pSubLR: pParent左孩子的右孩子,注意:该
 PNode pSubL = pParent->_pLeft;
 PNode pSubLR = pSubL->_pRight;
    // 旋转完成之后,30的右孩子作为双亲的左孩子
 pParent->_pLeft = pSubLR;
    // 如果30的左孩子的右孩子存在,更新亲双亲
 if(pSubLR)
 pSubLR->_pParent = pParent;
    // 60 作为 30的右孩子
pSubL->_pRight = pParent;
    
    // 因为60可能是棵子树,因此在更新其双亲前必须先保存60的双亲
 PNode pPParent = pParent->_pParent;
    
    // 更新60的双亲
 pParent->_pParent = pSubL;
    
    // 更新30的双亲
 pSubL->_pParent = pPParent;
    // 如果60是根节点,根新指向根节点的指针
 if(NULL == pPParent)
 {
 _pRoot = pSubL;
 pSubL->_pParent = NULL;
 }
 else
 {
         // 如果60是子树,可能是其双亲的左子树,也可能是右子树
 if(pPParent->_pLeft == pParent)
 pPParent->_pLeft = pSubL;
 else
 pPParent->_pRight = pSubL;
 }
    // 根据调整后的结构更新部分节点的平衡因子
 pParent->_bf = pSubL->_bf = 0;
}

2. 新节点插入较高右子树的右侧---右右:左单旋

实现及情况考虑可参考右单旋。

3. 新节点插入较高左子树的右侧---左右:先左单旋再右单旋

将双旋变成单旋后再旋转,即:先对30进行左单旋,然后再对90进行右单旋,旋转完成后再 考虑平衡因子的更新。

// 旋转之前,60的平衡因子可能是-1/0/1,旋转完成之后,根据情况对其他节点的平衡因子进
行调整
void _RotateLR(PNode pParent)
{
 PNode pSubL = pParent->_pLeft;
 PNode pSubLR = pSubL->_pRight;
    
    // 旋转之前,保存pSubLR的平衡因子,旋转完成之后,需要根据该平衡因子来调整其他节
点的平衡因子
 int bf = pSubLR->_bf;
    
    // 先对30进行左单旋
 _RotateL(pParent->_pLeft);
    
    // 再对90进行右单旋
 _RotateR(pParent);
 if(1 == bf)
 pSubL->_bf = -1;
 else if(-1 == bf)
 pParent->_bf = 1;
}

4. 新节点插入较高右子树的左侧---右左:先右单旋再左单旋

参考右左双旋。

总结: 假如以pParent为根的子树不平衡,即pParent的平衡因子为2或者-2,分以下情况考虑

1. pParent的平衡因子为2,说明pParent的右子树高,设pParent的右子树的根为pSubR

  • 当pSubR的平衡因子为1时,执行左单旋
  • 当pSubR的平衡因子为-1时,执行右左双旋

2. pParent的平衡因子为-2,说明pParent的左子树高,设pParent的左子树的根为pSubL

  • 当pSubL的平衡因子为-1是,执行右单旋
  • 当pSubL的平衡因子为1时,执行左右双旋 旋转完成后,原pParent为根的子树个高度降低,已经平衡,不需要再向上更新。

AVL树的验证

AVL树是在二叉搜索树的基础上加入了平衡性的限制,因此要验证AVL树,可以分两步:

1. 验证其为二叉搜索树

    如果中序遍历可得到一个有序的序列,就说明为二叉搜索树

2. 验证其为平衡树

  • 每个节点子树高度差的绝对值不超过1(注意节点中如果没有平衡因子)
  • 节点的平衡因子是否计算正确。
int _Height(PNode pRoot);
bool _IsBalanceTree(PNode pRoot)
{
 // 空树也是AVL树
 if (nullptr == pRoot) return true;
    
 // 计算pRoot节点的平衡因子:即pRoot左右子树的高度差
 int leftHeight = _Height(pRoot->_pLeft);
 int rightHeight = _Height(pRoot->_pRight);
 int diff = rightHeight - leftHeight;
// 如果计算出的平衡因子与pRoot的平衡因子不相等,或者
 // pRoot平衡因子的绝对值超过1,则一定不是AVL树
 if (diff != pRoot->_bf || (diff > 1 || diff < -1))
 return false;
 // pRoot的左和右如果都是AVL树,则该树一定是AVL树
 return _IsBalanceTree(pRoot->_pLeft) && _IsBalanceTree(pRoot-
>_pRight);
 }

AVL树的性能

AVL树是一棵绝对平衡的二叉搜索树,其要求每个节点的左右子树高度差的绝对值都不超过1,这 样可以保证查询时高效的时间复杂度,即$log_2 (N)$。但是如果要对AVL树做一些结构修改的操 作,性能非常低下,比如:插入时要维护其绝对平衡,旋转的次数比较多,更差的是在删除时, 有可能一直要让旋转持续到根的位置。因此:如果需要一种查询高效且有序的数据结构,而且数 据的个数为静态的(即不会改变),可以考虑AVL树,但一个结构经常修改,就不太适合。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值