思路:
此题是求有多少个区间的平均值>=t, 那么可以把每个值-t。如果新的数列的某个区间的和>=0,那么说明这个区间满足条件。
令新数列的前缀和为b[i],所以求[i, j]区间是否满足条件,即求b[j]-b[i-1]是否>=0,即b[j]>=b[i-1]。
因为j>i>i-1,所以这里即求“伪逆序对”的数量。
扩展知识:
逆序对:i>j a[i]<a[j] 伪逆序对/非逆序对:i>j a[i]>a[j]
方法:归并排序
代码:
1.8/10代码:错误原因:超时
#include <bits/stdc++.h>
using namespace std;
const long long int N = 1e6 + 10;
long long int p = 1e9 + 7;
long long int n, t;
long long int a[N];
long long int b[N];
int main()
{
cin >> n >> t;
for (long long int i = 1; i <= n; i++)
{
cin >> a[i];
a[i] -= t;
}
for (long long int i = 1; i <= n; i++)
{
b[i] = b[i - 1] + a[i];
}
long long int ans = 0;
for (long long int i = 1; i <= n; i++)
{
for (long long int j = 1; j <= i; j++)
{
if (b[i] - b[j - 1] >= 0)
{
ans++;
}
}
}
cout << ans % p;
}
2.10/10代码:升序排列求逆序对,再用总的-逆序对即为非逆序对个数
#include <bits/stdc++.h>
using namespace std;
#define ll long long
const int N = 1e6 + 10;
int p = 1e9 + 7;
ll n, t;
ll a[N], sum[N], q[N];
ll ans = 0;
void merge_sort(int l, int r, ll a[])
{
if (l >= r)
return;
int mid = (l + r) >> 1;
merge_sort(l, mid, a);
merge_sort(mid + 1, r, a);
int i = l, j = mid + 1, k = 0;
while (i <= mid && j <= r)
{
if (a[i] > a[j])
{
q[k++] = a[j++];
ans += mid - i + 1; // 升序排列,求逆序数
ans %= p;
}
else
{
q[k++] = a[i++];
}
}
while (i <= mid)
q[k++] = a[i++];
while (j <= r)
q[k++] = a[j++];
for (i = l, j = 0; i <= r; i++, j++)
{
a[i] = q[j];
}
}
int main()
{
cin >> n >> t;
for (int i = 1; i <= n; i++)
{
cin >> a[i];
a[i] -= t;
sum[i] = sum[i - 1] + a[i];
}
merge_sort(0, n, sum);
cout << (n * (n + 1) / 2 - ans) % p;
return 0;
}
3.10/10代码,直接降序求非逆序对个数
#include <bits/stdc++.h>
using namespace std;
#define ll long long
const int N = 1e6 + 10;
int p = 1e9 + 7;
ll n, t;
ll a[N], sum[N], q[N];
ll ans = 0;
void merge_sort(int l, int r, ll a[])
{
if (l >= r)
return;
int mid = (l + r) >> 1;
merge_sort(l, mid, a);
merge_sort(mid + 1, r, a);
int i = l, j = mid + 1, k = 0;
while (i <= mid && j <= r)
{
if (a[i] <= a[j])
{
q[k++] = a[j++];
ans += mid - i + 1; // 降序排列,求非逆序数
ans %= p;
}
else
{
q[k++] = a[i++];
}
}
while (i <= mid)
q[k++] = a[i++];
while (j <= r)
q[k++] = a[j++];
for (i = l, j = 0; i <= r; i++, j++)
{
a[i] = q[j];
}
}
int main()
{
cin >> n >> t;
for (int i = 1; i <= n; i++)
{
cin >> a[i];
a[i] -= t;
sum[i] = sum[i - 1] + a[i];
}
merge_sort(0, n, sum);
cout << ans % p;
return 0;
}