自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(12)
  • 资源 (2)
  • 收藏
  • 关注

原创 杭州软考及E类人才福利经验汇总(持续更新中)

讲述了在杭州考上软考高级后的各种福利及申请方式,例如如何申请E类人才、如何申请专家库、如何购买共有产权房等。

2024-11-10 00:18:13 1945

原创 消息队列看这一篇就够了!

我们介绍了消息队列的生产者消费者模型,以及异步解耦这2个经典引用场景,最后浅析了一个demo的具体实现。

2022-07-31 12:14:01 3295 1

原创 【科普帖】漫谈人工智能/神经网络(最新成果+历史现状)

(1) 引言不知说到神经网络的应用案例,大家的头脑里最先会浮现出什么?呵呵,相信不管回答是什么,都跳不出诸如人脸识别、车牌识别、手写字符识别这类思维定式。其实神经网络的应用远不止这些,下面我会给大家带来一些最新最热的例子。(2) 应用案例游戏AI其实提到游戏AI,除了AlphaGo的DeepMind公司之外,在美国也存在一家名叫OpenAI的公丝(也就是号称“硅谷钢铁侠”的埃隆·马...

2020-05-18 11:57:47 436 1

原创 Open AI gym 基本框架及注解(Python 3)

import gym #导入gym模块env = gym.make('CartPole-v0') #用该模块的make方法,创建/载入⼀个模型场景(⼩⻋倒⽴摆)env.reset() #初始化环境for _ in range(1000): #对于每个episode进行循环 env.render() #图像引擎,用于刷新环境并且显示 env.step(env.action_sp...

2019-10-01 18:20:40 1321

原创 OpenCV字符简单识别

(1)写在前面环境:Win10+VS2017+OpenCV3.4.6详细代码及附件见本人GitHub repository:https://github.com/BenJaminB1ue/carriage_number_detection_using_OpneCV(2)问题分析对于给定的一张带有序列号的列车图片,我们如何用计算机视觉与图像处理的方法,实现序列号文本的自动定位与文本字符的识...

2019-07-22 20:54:59 3539 2

原创 【实测有效】Win10+VS2017+OpenCV3.4.6的安装部署,以及错误诊断

(1)关于版本兼容弄清楚该过程可避免安装后的不兼容问题。详情请参考:CSDN博主qq_26658517:vs与OpenCV版本对应https://blog.csdn.net/qq_26658517/article/details/83067837(2)安装过程本人的配置为Win10+VS2017+OpenCV3.4.6安装过程请参考:CSDN博主 万俟淋曦:windows 下Ope...

2019-05-08 17:02:30 1246

原创 【实测有效】Win10的PyTorch及pip安装部署,以及一些经验分享

(1)安装pippip 是 Python 包管理工具,该工具提供了对Python 包的查找、下载、安装、卸载的功能。在cmd内输入:pip list若出现版本号,这说明pip在您的计算机上可以使用,否则得手动安装。安装过程请参考:https://www.cnblogs.com/yuanzm/p/4089856.html?utm_source=tuicool&utm_medium...

2019-04-19 15:22:25 1730

原创 【实测有效】Win10+Ubuntu18.04LTS双系统安装以及一些经验分享

(1) 安装步骤及资源下载安装步骤,请参考:CSDN博主nanyin_kang:https://blog.csdn.net/moxu0915/article/details/79296394/资源下载,请参考:注意这里的坑请见第二条!CSDN博主FMDangel:https://blog.csdn.net/qq_15192373/article/details/81075106(2)...

2019-02-09 16:12:47 1514 1

原创 OpenPose的Unity3D实现

本项目是OpenPose获取的数据在Unity3D中的一个实现,可将解析出来的坐标数据在Unity中进行调用,实现Unity模型的随动控制。

2019-01-20 22:22:25 20272 22

原创 Unity3D人体18节点骨骼动态简单点线模型的建立

笔者用一个项目中的例子,在Unity3D中建立人体18节点骨骼的动态简单点线模型。

2019-01-20 20:51:44 12605 6

原创 JSON数据的Unity3D解析过程

笔者用一个项目中的例子,即将摄像头捕获的人体关节点坐标json数据解析到Unity,再在Unity中输出数据的过程。

2019-01-20 20:08:19 5011 1

原创 【亲测有效】Win10的VS17/15环境下OpenPose的安装部署,以及一些经验分享

Win10的VS17/15环境下OpenPose的安装部署,以及一些经验分享

2018-11-28 17:33:42 6863 8

Python Reinforcement Learning Projects - 2018.pdf

Can You Train a Dog to Sit? If so, You Can Master Reinforcement Learning in No time! Welcome to the world of reinforced learning. This is a world where self-driving cars can be seen on real roads, where programs can beat world champions, where robots are not only a part of futuristic movies. Sound too scientifically involved for your expertise? Don?t worry; reinforcement learning is much more straightforward than you think. You do not need a college degree or to be a world-class developer in order to build a reinforcement learning application. Some rudimentary Python programming skills and a basic knowledge of Machine Learning is all it takes for this book to turn you into an RL expert. By describing the concept of reinforcement learning in a simple, non-technical way, teaching you its elements, applications, and algorithms in the most comprehensive way possible while giving you a great jumping-off point with some amazing Python implementations, this book is a definite must-have for everyone who wants to master this popular branch of AI without drowning in the technical nonsense. Inside this Book You?ll Discover: The elements of reinforcement learning Reiniforcement Learning vs. other learning types Simulated evironments and Policies A guide to Markov Decision Processes Dynamic Programming An exploration of Monte Carlo Methods The secrets to Q Learning And much, much more! If this sounds like a good deal to you, read this book and become a Reinforcement Learning expert in a matter of days.

2019-07-22

深入浅出强化学习:原理入门.pdf

《深入浅出强化学习:原理入门》用通俗易懂的语言深入浅出地介绍了强化学习的基本原理,覆盖了传统的强化学习基本方法和当前炙手可热的深度强化学习方法。开篇从*基本的马尔科夫决策过程入手,将强化学习问题纳入到严谨的数学框架中,接着阐述了解决此类问题*基本的方法——动态规划方法,并从中总结出解决强化学习问题的基本思路:交互迭代策略评估和策略改善。基于这个思路,分别介绍了基于值函数的强化学习方法和基于直接策略搜索的强化学习方法。*后介绍了逆向强化学习方法和近年具有代表性、比较前沿的强化学习方法。 除了系统地介绍基本理论,书中还介绍了相应的数学基础和编程实例。因此,《深入浅出强化学习:原理入门》既适合零基础的人员入门学习、也适合相关科研人员作为研究参考。

2019-07-22

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除