POJ 2104 浅谈函数式线段树即主席树构造

这里写图片描述
世界真的很大
主席树这东西听起来很高大上,其实并不是那么难
这道题就是一道主席树的裸题
之前用树套树写一直挂,今天用主席树一遍就A了,可能是代码难度的问题吧。。。
看题先:
description:

题意没什么好说的,求区间第K

input

一个数字n,接下来n个数表示序列,然后一个数m,接下来m组询问,每组询问包含三个整数l,r,k,求l到r内的区间第k大

首先要求第K大,一般会想到值域,如果能知道l到r内的值域分布,问题就是可解的了
那联想到值域线段树
主席树其实就是对序列的每一个点i,建一个保存[1,i]的值域的值域线段树,由于整个序列的值域已知,所以每棵树的形态都是相同的,这就使得各个值域线段树之间有了可减性
在查询[l,r]时,用[1,r]的值域线段树减去[1,l-1]的值域线段树,就得到了[l,r]的值域了
但是对于每个点都新建一颗线段树,空间复杂度是O(n^2),是不可接受的
我们发现对于相邻的两颗线段树,不同的部分仅仅是一个数而已,换言之就只是两颗线段树上的一条链不同而已,其实并用不了那么多的空间,只需要对于新的,不同的部分新建节点,对于相同的部分直接指向原来的树就好
说难的确不难了,但是我树套树的做法4个月了都没有调出来。。。
完整代码:

#include<stdio.h>
#include<algorithm>
using namespace std;

struct node
{
    int sum;
    node *ls,*rs;
}pool[8000010],*tail=pool,*root[100010];

struct A
{
    int sum,idx;
}aa[100010];

int n,m,rank[100010];

bool cmp(const A &a,const A &b)
{
    return a.sum<b.sum;
}

bool cmp2(const A &a,const A &b)
{
    return a.idx<b.idx;
}

node *newnode()
{
    node *nd=++tail;
    nd->ls=nd->rs=0;
    nd->sum=0;
    return nd;
}

node *build(int lf,int rg)
{
    node *nd=++tail;
    if(lf==rg)
    {
        nd->sum=0;
        nd->ls=nd->rs=0;
        return nd;
    }
    int mid=(lf+rg)>>1;
    nd->ls=build(lf,mid);
    nd->rs=build(mid+1,rg);
    return nd;
}

void insert(node *ne,node *&nd,int lf,int rg,int K)
{
    nd=newnode();
    nd->sum=ne->sum+1;
    if(lf==rg) return ;
    nd->ls=ne->ls,nd->rs=ne->rs;
    int mid=(lf+rg)>>1;
    if(K<=mid) insert(ne->ls,nd->ls,lf,mid,K);
    else insert(ne->rs,nd->rs,mid+1,rg,K);
}

int query(node *ne,node *nd,int lf,int rg,int K)
{
    if(lf==rg) return lf;
    int mid=(lf+rg)>>1;
    if(nd->ls->sum-ne->ls->sum>=K)
        return query(ne->ls,nd->ls,lf,mid,K);
    else
        return query(ne->rs,nd->rs,mid+1,rg,K-(nd->ls->sum-ne->ls->sum));
}

int main()
{
    scanf("%d%d",&n,&m);
    for(int i=1;i<=n;i++)
        scanf("%d",&aa[i].sum),aa[i].idx=i;
    sort(aa+1,aa+n+1,cmp);
    int tot=0;
    for(int i=1;i<=n;i++)
        if(aa[i].sum!=aa[i-1].sum)
        {
            tot++;
            rank[tot]=aa[i].sum;
            aa[i].sum=tot;
        }
    sort(aa+1,aa+n+1,cmp2);
    root[0]=build(1,tot);
    for(int i=1;i<=n;i++)
        root[i]=newnode();
    for(int i=1;i<=n;i++)
        insert(root[i-1],root[i],1,tot,aa[i].sum);
    while(m--)
    {
        int l,r,k;
        scanf("%d%d%d",&l,&r,&k);
        printf("%d\n",rank[query(root[l-1],root[r],1,tot,k)]);
    }
    return 0;
}
/*
Whoso pulleth out this sword from this stone and anvil is duly born King of all England
*/

嗯,就是这样

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值