互联网面试题——海量数据处理

题目问题一:现有海量日志数据,要提取出某日访问百度次数最多的那个IP(可以将题干简化,假设日志中仅包含IP数据,也就是说待处理的文件中包含且仅包含全部的访问IP,但内存空间有限,不能全部加载,假设只有512MB)解决方案:这是一道典型的分治思想的题目,这种问题处理起来套路比较固定,对于大部分的数据...

2018-05-03 14:54:59

阅读数 373

评论数 1

二叉树的递归与非递归遍历实现(前序、中序、后序)

        二叉树是一种非常重要的数据结构,很多其它数据结构都是基于二叉树的基础演变而来的。对于二叉树,有前序、中序以及后序三种遍历方法。因为树的定义本身就 是递归定义,因此采用递归的方法去实现树的三种遍历不仅容易理解而且代码很简洁。而对于树的遍历若采用非递归的方法,就要采用栈去模拟实现。在三...

2018-04-26 14:08:45

阅读数 165

评论数 0

字符串匹配(KMP)

1. 引言        最近在看一些算法,正好碰到了字符串匹配,著名的KMP算法早就听过,但是一直没有太好的理解。正好看到一篇很不错的博文,特地转载过来分享。文章很长,如果大家有耐心都看完,会有收获的。2. 暴力匹配算法    假设现在我们面临这样一个问题:有一个文本串S,和一个模式串P,现在要...

2018-01-19 14:39:09

阅读数 249

评论数 0

C++ STL中string用法

标准C++中提供的string类得功能是非常强大的,一般都能满足我们开发项目时使用。现将具体用法的一部分罗列如下: 要想使用标准C++中string类,必须要包含 #include // 注意是,不是,带.h的是C语言中的头文件 using  std::string; using  std...

2018-01-16 16:33:13

阅读数 260

评论数 0

推荐系统中的exploration-exploitation算法

推荐系统里面有两个经典问题:EE和冷启动。前者涉及到平衡准确和多样,后者涉及到产品算法运营等一系列。 Bandit算法是一种简单的在线学习算法,常常用于尝试解决这两个问题,本文为你介绍基础的Bandit算法及一系列升级版,以及对推荐系统这两个经典问题的思考。 什么是Bandit算法 为选择而...

2018-01-14 14:38:42

阅读数 1060

评论数 0

c++中set的用法

对于set这个容器,存储的是自动排序的独特元素。也就是说,在这个容器中,所有的元素都是唯一的。 set的元素不像map那样可以同时拥有实值(value)和键值(key),set元素的键值就是实值,实值就是键值。set不允许两个元素有相同的键值。所以set可以理解成一个特殊的map,底层跟ma...

2018-01-04 00:22:00

阅读数 325

评论数 0

win10远程桌面连接Ubuntu 16.04图形界面

******************************************************************************************************* 帮非计算机专业的同学安了个服务器,Desktop版的ubuntu,还必须用windo...

2017-12-19 10:14:21

阅读数 2496

评论数 0

最大似然估计(MLE)和最大后验概率(MAP)

最近在研究概率估计,最大似然估计(MLE)和最大后验概率(MAP)都可以用于估计生成样本数据的概率分布。 但二者略有区别,进行一下分析: 最大似然估计(MLE,Maximum Likelihood Estimation) 给定一堆数据,假如我们知道它是从某一种分布中随机取出来的,可是我们...

2017-11-21 21:00:10

阅读数 1487

评论数 0

贝叶斯分类——贝叶斯网络

在“贝叶斯分类——朴素贝叶斯算法”中,我介绍了朴素贝叶斯分类的相关知识。其中的核心思想是利用变量之间的“朴素”性质,计算出联合概率密度。这依赖于朴素贝叶斯分类的一个限制条件,就是特征属性必须有条件独立或基本独立。但现实中各个特征属性间往往并不条件独立,而是具有较强的相关性,这样就限制了朴素贝叶斯分...

2017-11-16 15:06:03

阅读数 553

评论数 0

增强学习(三)——Q-Learning

原文地址:http://mnemstudio.org/path-finding-q-learning-tutorial.htm 这篇教程通过简单且易于理解的实例介绍了Q-学习的概念知识,例子描述了一个智能体通过非监督学习的方法对未知的环境进行学习。 假设我们的楼层内共有5个房间,房间之间通过一道门...

2017-11-06 15:38:53

阅读数 1286

评论数 0

matlab rand函数

作用: 产生均匀分布的随机数或矩阵 语法: Y = rand(n):  返回一个n x n的随机矩阵。如果n不是数量,则返回错误信息。 Y = rand(m,n)    返回一个m x n的随机矩阵。 Y = rand([m n])  返回一个m x n的随机矩阵...

2017-10-18 20:05:46

阅读数 2993

评论数 0

使用rand()产生服从高斯/正态分布的随机数

我们借助于rand()去生成高斯/正态分布。 当然,rand是伪随机的问题在此先不考虑。 (1)用Box-Muller方法,随机抽出两个从均匀分布的数字和。然后 那和都是正态分布的。 证明可用极坐标,请参考教科书中的Box-Muller方法。 C代码: #include #inc...

2017-10-14 00:31:07

阅读数 5205

评论数 0

贝叶斯分类——朴素贝叶斯算法

在机器学习分类算法中,大多数的分类算法,比如决策树,KNN,SVM等,他们都是判别方法,也就是直接学习出特征输出Y和特征X之间的关系,要么是决策函数Y=f(x) ,要么是条件分布P(Y|X)。 但是朴素贝叶斯却是生成方法,也就是直接找出特征输出Y和特征X的联合分布P(Y,X),然后用P(Y|X)...

2017-10-11 21:37:13

阅读数 490

评论数 0

MacOS中dyld: Library not loaded的错误修正

今天在用mac编译udt代码时, make完之后会产生一个动态库libudt.dylib。 但在 Mac 系统中,默认搜索库的路径是 /usr/lib ,并不像 Windows 一样 dll 放在和 exe 同级目录下也会被搜索到。 因此会产生dyld: Library not loaded的问题...

2017-10-09 23:44:53

阅读数 1039

评论数 0

背景建模和前景提取 (2017研究生数模竞赛D题)

下面主要整理一下这次参加“2017中国研究生数学建模”的收获: 我们选择的是D题,一道计算机视觉(CV)的题目。 题目描述: 问题概括为一句话其实就是:在不同的背景条件下的监控视频中提取前景目标。主要分成一下几种情况: 问题1:内容为静态背景、摄像头稳定的监控视频。 问题2:内容为动态背景、摄像头...

2017-09-23 22:35:51

阅读数 9731

评论数 61

互联网公司 概率面试题整理

本文总结了面试或笔试中可能考到的概率和组合题。

2017-09-23 12:30:14

阅读数 7295

评论数 2

针对多媒体的拥塞控制实验测试标准

本篇博客主要基于RMCAT的一个测试样例标准(Test Cases for Evaluating RMCAT Proposals)进行总结。

2017-09-08 15:22:28

阅读数 454

评论数 2

拥塞控制算法之Verus (2015 Sigcomm)

这两天重读了一下2015 Sigcomm的一篇拥塞控制文章: Verus。整理如下: MOTIVATION: Veurs想要解决的问题:在复杂多变的无线网络环境下的拥塞控制。蜂窝无线网络具有难以预测的特性[3][4][5],并且传统的TCP在其中表现并不好[1][2],会造成bufferbl...

2017-09-04 20:40:52

阅读数 779

评论数 0

增强学习(二)——策略迭代与值迭代

本篇博客对“有模型学习”的两种方法进行介绍,分别是策略迭代和值迭代。 我们之前已经说到了MDP可以表示成一个元组(X, A, Psa, R),我们对最优策略的求解方法自然也就与这个元组密切相关:如果该过程的四元组均为已知,我们称这样的模型为“模型已知”,对这种已知所有环境因素的学习称为“有模型学习...

2017-08-30 14:34:52

阅读数 6708

评论数 10

一篇与技术无关的,愿自己常记在心的鸡汤

怎样做科研,愿自己常记在心。

2017-08-27 23:39:22

阅读数 373

评论数 0

提示
确定要删除当前文章?
取消 删除
关闭
关闭