在“贝叶斯分类——朴素贝叶斯算法”中,我介绍了朴素贝叶斯分类的相关知识。其中的核心思想是利用变量之间的“朴素”性质,计算出联合概率密度。这依赖于朴素贝叶斯分类的一个限制条件,就是特征属性必须有条件独立或基本独立。但现实中各个特征属性间往往并不条件独立,而是具有较强的相关性,这样就限制了朴素贝叶斯分类的适用范围。贝叶斯分类中有一种应用范围更广的算法——贝叶斯网络(又称贝叶斯信念网络或信念网络)。
基本概念:
一个贝叶斯网络定义包括一个有向无环图(DAG)和一个条件概率表集合。
DAG中每一个节点表示一个随机变量,可以是可直接观测变量或隐藏变量,而有向边表示随机变量间的条件依赖;条件概率表中的每一个元素对应DAG中唯一的节点,存储此节点对于其所有直接前驱节点的联合条件概率。
本文介绍了贝叶斯网络的概念,它是对朴素贝叶斯分类的扩展,允许变量间存在条件依赖。贝叶斯网络由有向无环图(DAG)和条件概率表组成,其中节点表示随机变量,边表示条件依赖。通过有向分离(D-separation)方法分析变量间的独立性。在特定结构下,如Z已知,X和Y的独立性会受到影响。贝叶斯网络的关键特性是每个节点在其直接前驱节点给定时与其他非直接前驱节点条件独立,简化了联合概率分布的计算,提高了算法的适用性。
最低0.47元/天 解锁文章
1086

被折叠的 条评论
为什么被折叠?



