在“贝叶斯分类——朴素贝叶斯算法”中,我介绍了朴素贝叶斯分类的相关知识。其中的核心思想是利用变量之间的“朴素”性质,计算出联合概率密度。这依赖于朴素贝叶斯分类的一个限制条件,就是特征属性必须有条件独立或基本独立。但现实中各个特征属性间往往并不条件独立,而是具有较强的相关性,这样就限制了朴素贝叶斯分类的适用范围。贝叶斯分类中有一种应用范围更广的算法——贝叶斯网络(又称贝叶斯信念网络或信念网络)。
基本概念:
一个贝叶斯网络定义包括一个有向无环图(DAG)和一个条件概率表集合。
DAG中每一个节点表示一个随机变量,可以是可直接观测变量或隐藏变量,而有向边表示随机变量间的条件依赖;条件概率表中的每一个元素对应DAG中唯一的节点,存储此节点对于其所有直接前驱节点的联合条件概率。