- 博客(2)
- 收藏
- 关注
原创 StarGAN在RaFD的实现
前情提要论文学习:link参考的论文实现代码(Pytorch):link环境Python3.6Pytorch1.0.0(平台没有装Tensorflow的条件,所以砍掉了代码里的可视化部分)数据集RaFD申请:link数据集处理:link1.90%的训练集和10%的测试集2.裁剪为人脸居中的256x2563.存放的目录结构如下训练在RaFD上训练StarGAN# Train StarGAN using the RaFD datasetpython main.py --mode
2020-05-15 19:30:45 3564 46
翻译 StarGAN论文
目录一览摘要1.介绍术语解释数据集一对一图像转换的不足针对以上不足的StarGAN优势论文的贡献2.相关基础知识生成式对抗网络GAN条件生成式对抗网络CGAN图像翻译3.StarGAN3.1多域单数据集的图像翻译对抗损失(adv)域分类损失(cls)重建损失(rec)完整的损失3.2多域多数据集的图像翻译掩码向量mask vector训练策略4.操作GAN改进(梯度惩罚的对抗损失)网络结构5.实验5.1Baseline Models5.2数据集CelebARaFD5.3训练5.4在CelebA的训练结果5.
2020-05-15 19:10:04 1126
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人