StarGAN在RaFD的实现

前情提要论文学习:link
参考的论文实现代码(Pytorch):link

环境

Python3.6
Pytorch1.0.0
(平台没有装Tensorflow的条件,所以砍掉了代码里的可视化部分)

数据集

RaFD申请:link
数据集处理:link
1.90%的训练集和10%的测试集
2.裁剪为人脸居中的256x256
3.存放的目录结构如下
在这里插入图片描述

训练

在RaFD上训练StarGAN

# Train StarGAN using the RaFD dataset
python main.py -
### StarGAN 训练自定义数据集教程 #### 1. 明确需求与准备环境 在使用StarGAN框架训练自定义数据集之前,需确保已安装必要的依赖库并配置好运行环境。通常情况下,StarGAN基于PyTorch开发,因此需要安装PyTorch及相关工具包[^1]。 #### 2. 数据集预处理 对于自定义数据集,其结构应类似于官方提供的CelebA或RaFD数据集。如果计划使用类似RaFD数据集,则需要按照指定的目录结构组织文件,并可能需要向相关机构申请访问权限[^3]。具体操作如下: - 创建清晰的文件夹层次结构,例如将不同类别的图像分别存放在独立子文件夹中。 - 如果数据集中存在标注信息(如属性标签),则整理成CSV或其他可读取格式供后续加载。 #### 3. 超参数调整 根据目标应用场景的不同,合理设置超参数至关重要。这些参数包括但不限于批量大小(batch size)、学习率(learning rate)以及迭代次数(number of iterations)。以下是一个简单的Python脚本用于初始化部分常见变量: ```python import torch.optim as optim # 定义优化器及其对应的学习速率 lr_g = 0.0001 lr_d = 0.0001 optimizer_G = optim.Adam(generator.parameters(), lr=lr_g, betas=(0.5, 0.999)) optimizer_D = optim.Adam(discriminator.parameters(), lr=lr_d, betas=(0.5, 0.999)) total_epochs = 200 # 总共训练轮数 batch_size = 16 # 批量尺寸 ``` #### 4. 构建模型架构 参照原始论文中的设计原则,在Keras或者PyTorch平台上重新实现Generator和Discriminator模块。这里以PyTorch为例展示基础代码片段: ```python class Generator(nn.Module): def __init__(self, conv_dim=64, c_dim=5, repeat_num=6): super(Generator, self).__init__() layers = [] ... def forward(self, x, c): ... class Discriminator(nn.Module): def __init__(self, image_size=128, conv_dim=64, c_dim=5, repeat_num=6): super(Discriminator, self).__init__() ... def forward(self, x): ... ``` 以上仅展示了大致框架,实际编码过程中还需要填充省略号处的具体逻辑^。 #### 5. 开始训练过程 完成上述准备工作之后即可启动正式训练流程。期间要密切关注损失函数变化趋势图以便及时发现潜在问题并作出相应修改。此外还可以定期保存中间成果作为备份以防意外丢失进展[^4]。 ---
评论 46
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值