音频基础知识

声音的三要素:

频率, 振幅, 波形

频率代表音阶的高低(女生的音阶高,男生偏低), 频率越高,波长就会越短.

振幅代表响度

波形代表音色

 

音频采样:

对模型信号进行采样,采样可以理解为在时间轴上对信号进行数字化

AD转换:

按比声音最高频率高2倍以上的频率对声音进行采样.

采样率:

声音频率为500次,采样1000次,采集顶峰或底峰数据;

前面提到高质量音频信号,其频率范围是20Hz-20KHz.所以采样频率一般是44.1KHzs

 

声音的编码:

按照一定格式记录采样和量化后的数据

音频编码的格式有很多种,而通常所说的音频裸数据指的是脉冲编码调制(PCM)数据.

如果想要描述一份PCM数据,需要从如下几个方向出发:

  • 量化格式(sampleFormat)
  • 采样率(sampleRate)
  • 声道数(channel)

比特率:

以CD音质为例,量化格式为16bite,采样率为44100,声道数为2.这些信息描述CD音质.那么可以CD音质数据,比特率是多少?

44100 * 16 * 2 = 1378.125kbps

 

那么一分钟的,这类CD音质数据需要占用多少存储空间?

1378.125 * 60 / 8 / 1024 = 10.09MB

 

如果sampleFormat更加精确或者sampleRate更加密集,那么所占的存储空间就会越大,同时能够描述的声音细节就会更加精确

内容概要:本文档提供了三种神经网络控制器(NNPC、MRC和NARMA-L2)在机器人手臂模型上性能比较的MATLAB实现代码及详细解释。首先初始化工作空间并设定仿真参数,包括仿真时间和采样时间等。接着定义了机器人手臂的二阶动力学模型参数,并将其转换为离散时间系统。对于参考信号,可以选择方波或正弦波形式。然后分别实现了三种控制器的具体算法:MRC通过定义参考模型参数并训练神经网络来实现控制;NNPC利用预测模型神经网络并结合优化算法求解控制序列;NARMA-L2则通过两个神经网络分别建模f和g函数,进而实现控制律。最后,对三种控制器进行了性能比较,包括计算均方根误差、最大误差、调节时间等指标,并绘制了响应曲线和跟踪误差曲线。此外,还强调了机器人手臂模型参数的一致性和参考信号设置的规范性,提出了常见问题的解决方案以及性能比较的标准化方法。 适合人群:具备一定编程基础,特别是熟悉MATLAB编程语言的研究人员或工程师,以及对神经网络控制理论有一定了解的技术人员。 使用场景及目标:①理解不同类型的神经网络控制器的工作原理;②掌握在MATLAB中实现这些控制器的方法;③学会如何设置合理的参考信号并保证模型参数的一致性;④能够根据具体的性能指标对比不同控制器的效果,从而选择最适合应用场景的控制器。 其他说明:本文档不仅提供了完整的实验代码,还对每个步骤进行了详细的注释,有助于读者更好地理解每段代码的功能。同时,针对可能出现的问题给出了相应的解决办法,确保实验结果的有效性和可靠性。为了使性能比较更加公平合理,文档还介绍了标准化的测试流程和评估标准,这对于进一步研究和应用具有重要的指导意义。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值