Reddit热议: 如何读论文才不至于发疯? 许多新晋研究生在迈入新的领域时,都要阅读大量相关领域论文,但在信息爆炸时代,如何读论文才能高效吸收呢?本文根据Reddit热议问题,对相关回答进行了整理,希望可以有所帮助。
VPU/NPU/TPU/GPU/CPU眼花缭乱,傻傻分不清楚?三百字讲明白 CPU,Centeral Processing Unit(中央处理器)GPU,Graphics Processing Unit(图形处理器)VPU,Video Processing Unit(视频处理单元)NPU,Neural-netwok Processing Unit(神经网络处理器)TPU,Tensor Processing Unit(张量处理器)
语音处理:音频入门之基础概念总结 语音处理:音频入门之基础概念总结基本概念过采样:超过音频本身实际带宽的采样率,如音频带宽12kHz,用96kHz采样属于过采样,用24kHz采样则较为合理。上采样,也属于过采样。常见采样率:16/32/48/44.1/48/88.2/96kHz。上采样:从较低采样率上升至高采样率,如16kHz采样提高至48kHz采样,本质采用的是插值方法。下采样:从较高采样率下降至低采样率,如48kHz采样下降至16kHz采样,本质采用的是抽样方法。上混:多个单声道混成多声道,类似于声轨处理。下混:
C模板:十进制和十六进制数据批量转换 在项目中,许多时候需要将十进制(`DEC`)的浮点、整型数据,批量转换为十六进制(`HEX`)的数据。这里,提供下C语言的实现版本,有兴趣者,用Python实现可能会更方便些。
Python报错:SyntaxError: unexpected EOF while parsing 小规模代码中,可以利用二分法快速定位,不断切分代码模块,打印或查看关键变量是否符合预期,从而找到出现问题的代码,确定具体哪行报错。
压缩算法之算术编码与霍夫曼编码经典对比分析 前文单独浅析过算术编码霍夫曼编码的功能及实现,均属于熵编码,常用于无损压缩场合。本文将两者结合在一起,从专利角度、易用性、使用广度、压缩效率等角度进行对比分析,以加深对两种经典压缩算法的认识。
Python实践:一键批量替换不同文本字符串 由于部分项目有平台兼容性要求,为了使代码可移植,C代码中可能会利用宏命名,来控制类型定义。如何将当前代码数据类型,批量替换为重定义后通用类型,成了我们要解决的问题。于是编写了以下Python脚本。
压缩算法之算术编码浅析与实现 算术编码,属于熵编码的范畴,常用于各种信息压缩场合,如图像、视频、音频压缩领域。基本原理:出现频率高的信息,分配少的比特,频率低的信息则分配多的比特。步骤过程简单来讲:将一串信息压缩到`[0, 1]`区间的一个浮点值。