背包各类问题总结(算法)

本文总结了背包问题中的01背包和完全背包问题。01背包问题中,每件物品只能使用一次,目标是最大化价值。完全背包问题则允许每种物品无限次使用,同样追求价值最大化。对于01背包,状态转移方程式是dp[i][j] = max(dp[i-1][j], dp[i-1][j-v[i]] + w[i]),而完全背包的状态转移方程式为dp[i][j] = max(dp[i-1][j], dp[i][j-v[i]] + w[i])。两种问题的时间复杂度和空间复杂度均为O(nV)。" 125061019,814141,iOS应用中的文件目录结构详解,"['ios', 'xcode', 'iPhone']
摘要由CSDN通过智能技术生成


前言

引用 dd大牛的《背包九讲》博客

一、01背包问题

1、题目

有 N 件物品和一个容量是 V 的背包。每件物品只能使用一次。
第 i 件物品的体积是 vi,价值是 wi。

求解将哪些物品装入背包,可使这些物品的总体积不超过背包容量,且总价值最大。

输出最大价值。

2、基本思路

最基础的背包问题,特点:物品只有一件,可以选择放或者不放

用子问题定义状态:dp[i][j] 表示前i件物品放入一个容量为j的背包,获得的总价值最大-------res = max(dp[N][0~V])

dp[i][j]:

  1. 不选第i件物品的最大总价值:dp[i][j] = dp[i-1][j];
  2. 选第i件物品的最大总价值:dp[i][j] = dp[i-1][j-v[i]] + w[i];

所以,状态转移方程式:dp[i][j] = max(dp[i-1][j] ,dp[i-1][j-v[i]] + w[i]);

“将前i件物品放入容量为v的背包中”这个子问题,若只考虑第i件物品的策略(放或不放),那么就可以转化为一个只牵扯前i-1件物品的问题。如果不放第i件物品,那么问题就转化为“前i-1件物品放入容量为j的背包中”;如果放第i件物品,那么问题就转化为“前i-1件物品放入剩下的容量为j-v[i]的背包中”,此时能获得的最大价值就是f [i-1][j-v[i]]再加上通过放入第i件物品获得的价值w[i]

3、代码部分

const helper =function (V ,  n ,  vw){
   
    const dp = Array.from(new Array(n+1),()=>new Array(V+1).fill(0));
    // console.log(dp);
    vw.unshift([0,0]);

    for(let i=1;i<=n;i++){
   
        for(let j=1;j<=V;j++){
   
            dp[i][j] = dp[i-1][j];
            if(vw[i][0]<=j){
   
                dp[i][j] = Math.max
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值