题目描述:
给定一个二叉树, 找到该树中两个指定节点的最近公共祖先。
百度百科中最近公共祖先的定义为:“对于有根树 T 的两个结点 p、q,最近公共祖先表示为一个结点 x,满足 x 是 p、q 的祖先且 x 的深度尽可能大(一个节点也可以是它自己的祖先)。”
示例 1:
输入: root = [3,5,1,6,2,0,8,null,null,7,4], p = 5, q = 1
输出: 3 解释: 节点 5 和节点 1 的最近公共祖先是节点 3。
示例 2:
输入: root = [3,5,1,6,2,0,8,null,null,7,4], p = 5, q = 4
输出: 5
解释: 节点 5 和节点 4 的最近公共祖先是节点 5。因为根据定义最近公共祖先节点可以为节点本身。
//思路:
// 1. 如果 p 和 q 都在左子树上,公共祖先就是在左子树上
// 2. 如果 p 和 q 都在右子树上,公共祖先就是在右子树上
// 3. 如果 p 在左子树、q 在右子树 或者 p 在右子树、q 在左子树,则公共祖先一定是根节点
//所以问题就转换成,在左右子树查找 p q
class Solution {
public boolean search(TreeNode s,TreeNode t){
if(s==null){
return false;
}
if(s==t){
return true;
}
if(search(s.left,t)){
return true;
}
return search(s.right,t);
}
public TreeNode lowestCommonAncestor(TreeNode root, TreeNode p, TreeNode q) {
//任意两个节点的公共祖先都是 root
//当 p q 任一一个为 root,返回肯定是 root
if(p==root||q==root){
return root;
}
//判断 p 是否在左子树
boolean pInLeft = search(root.left,p);
//判断 q 是否在左子树
boolean qInLeft = search(root.left,q);
//p 在左子树并且 q 在左子树
if(pInLeft&&qInLeft){
return lowestCommonAncestor(root.left,p,q);
}
//p q 均在右子树
if(!pInLeft&&!qInLeft){
return lowestCommonAncestor(root.right,p,q);
}
// p 在左子树、q 在右子树 或者 p 在右子树、q 在左子树
return root;
}
}