二叉树的最近公共祖先

题目描述:
给定一个二叉树, 找到该树中两个指定节点的最近公共祖先。
百度百科中最近公共祖先的定义为:“对于有根树 T 的两个结点 p、q,最近公共祖先表示为一个结点 x,满足 x 是 p、q 的祖先且 x 的深度尽可能大(一个节点也可以是它自己的祖先)。”

在这里插入图片描述

示例 1:
输入: root = [3,5,1,6,2,0,8,null,null,7,4], p = 5, q = 1
输出: 3 解释: 节点 5 和节点 1 的最近公共祖先是节点 3。

示例 2:
输入: root = [3,5,1,6,2,0,8,null,null,7,4], p = 5, q = 4
输出: 5
解释: 节点 5 和节点 4 的最近公共祖先是节点 5。因为根据定义最近公共祖先节点可以为节点本身。

//思路:
//	1. 如果 p 和 q 都在左子树上,公共祖先就是在左子树上
//	2. 如果 p 和 q 都在右子树上,公共祖先就是在右子树上
//	3. 如果 p 在左子树、q 在右子树 或者 p 在右子树、q 在左子树,则公共祖先一定是根节点
//所以问题就转换成,在左右子树查找 p   q
class Solution {
    public boolean search(TreeNode s,TreeNode t){
        if(s==null){
            return false;
        }
        if(s==t){
            return true;
        }
        if(search(s.left,t)){
            return true;
        }
        return search(s.right,t);
    }
    public TreeNode lowestCommonAncestor(TreeNode root, TreeNode p, TreeNode q) {
   		//任意两个节点的公共祖先都是 root
   		//当 p q 任一一个为 root,返回肯定是 root
        if(p==root||q==root){
            return root;
        }
        //判断 p 是否在左子树
        boolean pInLeft = search(root.left,p);
        //判断 q 是否在左子树
        boolean qInLeft = search(root.left,q);
        //p 在左子树并且 q 在左子树
        if(pInLeft&&qInLeft){
            return lowestCommonAncestor(root.left,p,q);
        }
        //p q 均在右子树
        if(!pInLeft&&!qInLeft){
            return lowestCommonAncestor(root.right,p,q);
        }
        // p 在左子树、q 在右子树 或者 p 在右子树、q 在左子树
        return root;
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值