快速排序算法:
1.在数组中选一个基准数(数组的第一个)
2.将数组中小于基准数的元素移到基准数的左边,将数组中大于基准数的元素移到基准数的右边
3.以基准数为界限,在基准数的左边和右边分别重复1.2过程,直到每个子集中只有一个元素,即排序完成
算法例子:
设置arr[5]={5,1,2,4,3},取temp=arr[0]=5;设置i=0,j=4;
先让j从右边遍历寻找比temp小的元素,将j的元素传给i元素位置a[i]=a[j]
再让i从左边遍历寻找比temp大的元素,将i的元素传给j元素位置a[j]=a[i]
即现在数组为arr[5]={3,1,2,4,5}
接着在0-3内循环数组变为arr[5]={2,1,3,4,5}
接着在0-2内循环数组变为arr[5]={1,2,3,4,5}
代码实现:
#include <iostream>
using namespace std;
void quicksort(int[], int, int);
int main()
{
int a[5] = { 5,1,2,4,3 };
quicksort(a, 0, 4);
for (int i = 0; i < 5; i++)
cout << a[i];
return 0;
}
void quicksort(int a[], int begin, int end)//begin是数组头,end是数组的尾
{
if (begin < end)//如果此区间里不只一个数时
{
int temp = a[begin];//将数组的第一个数作为基准数
int i = begin;//从左开始遍历
int j = end;//从右开始遍历
while (i < j)//遍历开始
{
while (i<j && a[j]>temp)//当a[j]小于或者等于基准数,跳出循环,否则遍历
j--;
a[i] = a[j];
while (i < j && a[i] <= temp)//当a[i]大于基准数,跳出循环,否则遍历
i++;
a[j] = a[i];
}
a[i] = temp;//此时i=j,将基准数放到里面
quicksort(a, begin, i - 1);//基准数左边区间继续重复
quicksort(a, i + 1, end);//基准数右边区间继续重复
}
else
return;
}
求数组中的第n小的值:
方法1.利用排序的数组排序,运行时间较久
方法2.利用这个快速排序算法,当快速排序进行一次排序的时候,在基准数左侧的都是比基准数小的,在基准数右侧都是比基准数大的。
1)当基准数的下标等于n-1,说明基准数的点就是第n小的值
2)当基准数的下标大于n-1,说明所要求的第n小的值在基准数左侧的数组里,因此只需要对左侧的数组进行快速排序
3)当基准数的下标小于n-1,说明所要求的第n小的值在基准数右侧的数组里,因此只需要对右侧的数组进行快速排序
代码实现
//大部分代码和上面代码相同
#include <iostream>
using namespace std;
int quicksort(int[], int, int, int);
int main()
{
int a[5] = { 5,1,2,4,3 };
cin>>n;//第n小的值
cout<< quicksort(a, 0, 4, n);
return 0;
}
int quicksort(int a[], int begin, int end, int n)
{
int temp = a[begin];
int i = begin;
int j = end;
while (i < j)
{
while (i<j && a[j]>temp)
j--;
a[i] = a[j];
while (i < j && a[i] <= temp)
i++;
a[j] = a[i];
}
a[i] = temp;
if (i == n - 1)//当基准数的下标等于n-1,基准数的值就是第n小的值,返回基准数的值
return a[i];
else
{
if (i < n - 1)//当基准数的下标小于n-1,在右侧的数组进行寻找
quicksort(a, i + 1, end, n);
else//当基准数的下标大于n-1,在左侧的数组进行寻找
quicksort(a, begin, i - 1, n);
}
}