此问题的解决思路很简单,就是给整个数组排序再通过下标索引取出元素即可,算法复杂度为O(n*logn),但是!在本篇博文中学习了快速排序后,可使用O(n)时间获取。
快速排序的核心过程
每次找到一个标志点,将此点挪到数组中合适的位置,注意此合适位置恰好是数组中排序好后所处的位置。
示例引导
例如下图示例中的标志点4,最后挪到的位置恰好就是数组最后有序的位置,比如此时我们要获取第6个位置上的元素,那么标志位4之前的元素无需考虑,从后部分处理,继续处理后部分的第二位是谁?
public class SelectionKnum {
private SelectionKnum(){}
private static int partiton(Comparable[] arr, int l, int r){
SortTestHelper.swap(arr, l, (int)(Math.random()*(r-l+1))+l);
Comparable v = arr[l];
int j = l;
for(int i = l + 1; i <= r; i++){
if(arr[i].compareTo(v) < 0){
j ++;
SortTestHelper.swap(arr, j, i);
}
SortTestHelper.swap(arr, l, j);
}
return j;
}
//求arr数组中[l...r]范围里第k小的数
private static Comparable solve(Comparable[] arr, int l, int r, int k){
if( l == r ) return arr[l];
int p = partiton(arr, l, r);
if(k == p){
return arr[p];
}else if(k < p){
return solve(arr, l, p-1, k);
}else if(k > p) {
return solve(arr, p + 1, r, k);
}
return null;
}
//这里k为0,即最小的数为第0小的数
public static Comparable solve(Comparable[] arr, int k){
assert arr != null && k >= 0 && k < arr.length;
return solve(arr, 0, arr.length - 1, k);
}
//如果k从1开始的,即最小的为第1个数
public static Comparable solve2(Comparable[] arr, int k){
return solve(arr, k-1);
}
public static void main(String[] args) {
Integer[] arr = {2,3,1,5,7};
System.out.println(solve(arr, 2));
}
}