Description
奶 牛们最近的旅游计划,是到苏必利尔湖畔,享受那里的湖光山色,以及明媚的阳光。作为整个旅游的策划者和负责人,贝茜选择在湖边的一家著名的旅馆住宿。这个 巨大的旅馆一共有N (1 <= N <= 50,000)间客房,它们在同一层楼中顺次一字排开,在任何一个房间里,只需要拉开窗帘,就能见到波光粼粼的湖面。 贝茜一行,以及其他慕名而来的旅游者,都是一批批地来到旅馆的服务台,希望能订到D_i (1 <= D_i <= N)间连续的房间。服务台的接待工作也很简单:如果存在r满足编号为r..r+D_i-1的房间均空着,他就将这一批顾客安排到这些房间入住;如果没有满 足条件的r,他会道歉说没有足够的空房间,请顾客们另找一家宾馆。如果有多个满足条件的r,服务员会选择其中最小的一个。 旅馆中的退房服务也是批量进行的。每一个退房请求由2个数字X_i、D_i 描述,表示编号为X_i..X_i+D_i-1 (1 <= X_i <= N-D_i+1)房间中的客人全部离开。退房前,请求退掉的房间中的一些,甚至是所有,可能本来就无人入住。 而你的工作,就是写一个程序,帮服务员为旅客安排房间。你的程序一共需要处理M (1 <= M < 50,000)个按输入次序到来的住店或退房的请求。第一个请求到来前,旅店中所有房间都是空闲的。
Input
* 第1行: 2个用空格隔开的整数:N、M
- 第2..M+1行: 第i+1描述了第i个请求,如果它是一个订房请求,则用2个数字 1、D_i描述,数字间用空格隔开;如果它是一个退房请求,用3 个以空格隔开的数字2、X_i、D_i描述
Output
* 第1..??行: 对于每个订房请求,输出1个独占1行的数字:如果请求能被满足 ,输出满足条件的最小的r;如果请求无法被满足,输出0
Sample Input
10 6
1 3
1 3
1 3
1 3
2 5 5
1 6
Sample Output
1
4
7
0
5
HINT
Source
Gold
**题解:
用线段树维护每个区间的最大连续0的个数,当区间进行合并时,要另维护区间左连续零和右连续零的个数,再进行相加。入住操作相当于找第一个区间连续零个数大于k的,再进行区间赋值为1,退房操作相当于区间赋值为0。**
#include <iostream>
#include <cstdio>
#include <algorithm>
using namespace std;
const int MAXN=50001;
struct Seg
{
int l,r,s,lazy,lx,rx,f;
}Tree[MAXN<<2];
int n;
void Make_Tree(int x,int l,int r)
{
Tree[x].l=l,Tree[x].r=r;
if(l==r) {
Tree[x].s=1;Tree[x].lazy=0;Tree[x].lx=Tree[x].rx=1;
Tree[x].f=1;
return;
}
int mid=(l+r)>>1;
Make_Tree(x<<1,l,mid);
Make_Tree(x<<1|1,mid+1,r);
Tree[x].s=Tree[x].r-Tree[x].l+1;
Tree[x].lx=Tree[x].rx=Tree[x].s;
}
void pushdown(int x)
{
int lc=x<<1,rc=x<<1|1;
if(Tree[x].f==1) {
Tree[x<<1].s=Tree[x<<1].lx=Tree[x<<1].rx=Tree[x<<1].r-Tree[x<<1].l+1;
Tree[x<<1|1].s=Tree[x<<1|1].lx=Tree[x<<1|1].rx=Tree[x<<1|1].r-Tree[x<<1|1].l+1;
Tree[x].f=0;Tree[x<<1].f=1,Tree[x<<1|1].f=1;
}
else if(Tree[x].f==2) {
Tree[x<<1].s=Tree[x<<1|1].s=0;
Tree[x<<1].lx=Tree[x<<1|1].lx=0;
Tree[x<<1].rx=Tree[x<<1|1].rx=0;
Tree[x].f=0;Tree[x<<1].f=2,Tree[x<<1|1].f=2;
}
}
void Modify(int x,int l,int r,int f)
{
//cout<<x<<' '<<l<<' '<<r<<Tree[x].s<<endl;
if(Tree[x].l==l&&Tree[x].r==r) {
if(f==1) Tree[x].s=Tree[x].lx=Tree[x].rx=r-l+1,Tree[x].f=1;
else if(f==2) Tree[x].s=Tree[x].lx=Tree[x].rx=0,Tree[x].f=2;
return;
}
int mid=(Tree[x].l+Tree[x].r)>>1;
pushdown(x);
if(r<=mid) Modify(x<<1,l,r,f);
else if(l>mid) Modify(x<<1|1,l,r,f);
else Modify(x<<1,l,mid,f),Modify(x<<1|1,mid+1,r,f);
Tree[x].s=max(Tree[x<<1].s,Tree[x<<1|1].s);
Tree[x].s=max(Tree[x].s,Tree[x<<1].rx+Tree[x<<1|1].lx);
Tree[x].lx=Tree[x<<1].lx;
if(Tree[x].lx==Tree[x<<1].r-Tree[x<<1].l+1) Tree[x].lx+=Tree[x<<1|1].lx;
Tree[x].rx=Tree[x<<1|1].rx;
if(Tree[x].rx==Tree[x<<1|1].r-Tree[x<<1|1].l+1) Tree[x].rx+=Tree[x<<1].rx;
// cout<<'@'<<Tree[x].s<<' '<<x<<'@'<<endl;
}
int Query(int x,int k)
{
if(Tree[x].l==Tree[x].r) return Tree[x].l;
pushdown(x);
int mid=(Tree[x].l+Tree[x].r)>>1;
if(Tree[x<<1].s>=k) return Query(x<<1,k);
else if(Tree[x<<1].rx+Tree[x<<1|1].lx>=k) return mid-Tree[x<<1].rx+1;
else return Query(x<<1|1,k);
}
void check()
{
int i,j;
for(i=1;i<=n*2;i++)
cout<<Tree[i].l<<" "<<Tree[i].r<<" "<<Tree[i].s<<" "<<Tree[i].lx<<" "<<Tree[i].rx<<" "<<Tree[i].f<<endl;
}
int main(int argc, char *argv[])
{
int i,j,op,x,y,m;
scanf("%d%d",&n,&m);
Make_Tree(1,1,n);
for(i=1;i<=m;i++)
{
scanf("%d",&op);
if(op==1) {
scanf("%d",&x);
if(Tree[1].s<x) printf("0\n");
else {
int ans=Query(1,x);
printf("%d\n",ans);
Modify(1,ans,ans+x-1,2);
}
}
else {
scanf("%d%d",&x,&y);
Modify(1,x,x+y-1,1);
}
}
return 0;
}