原题地址:http://www.lydsy.com/JudgeOnline/problem.php?id=4720
题意:
现有v个点和e条边,每条边有边权。n个时刻,在i时刻应前往地点c[i],可申请前往地点d[i],有p[i]的几率申请成功,最多申请m次。如何分配申请使得期望经过的距离最小,求期望的最小距离。
v<=300,n,m<=2000,e<=90000
题解:
dp[i][j][k]: i 时刻,到当前时刻提交了 j 个申请,且 i 时刻 不提交/提交 的最小期望。
转移 :
dp[i][j][0]=min(dp[i−1][j][0]+dis[c[i−1]][c[i]],p[i−1]∗(dp[i−1][j][1]+dis[d[i−1]][c[i]])+(1−p[i−1])∗(dp[i−1][j][1]+dis[c[i−1]][c[i]])
dp[i][j][1]=min(p[i]∗(dp[i−1][j−1][0]+dis[c[i−1]][d[i]])+(1−p[i])∗(dp[i−1][j−1][0]+dis[c[i−1]][c[i]]),p[i]∗p[i−1]∗(dp[i−1][j−1][1]+dis[d[i−1]][d[i]])+p[i]∗(1−p[i−1])∗(dp[i−1][j−1][1]+dis[c[i−1]][d[i]])+(1−p[i])∗p[i−1]∗(dp[i−1][j−1][1]+dis[d[i−1]][c[i]])+(1−p[i])∗(1−p[i−1])∗(dp[i−1][j−1][1]+dis[c[i−1]][c[i]]))
边界:
dp[1][1][1]=dp[1][0][0]=0
注意:输入时有重边要取最小值(WA点),每两点之间的最短路用floyed ,最终复杂度 O(v^3+mn)。
代码:
#include<cstdio>
#include<iostream>
#include<cstring>
#include<algorithm>
using namespace std;
const int N=2005;
const int M=305;
const int inf=1e6;
int dis[M][M];
int n,m,v,e;
int c[N][2];
double p[N],dp[N][N][2];
double mi(double A,double B)
{
return A<B?A:B;
}
int main()
{
scanf("%d%d%d%d",&n,&m,&v,&e);
for(int i=1;i<=n;i++) scanf("%d",&c[i][0]);
for(int i=1;i<=n;i++) scanf("%d",&c[i][1]);
for(int i=1;i<=n;i++) scanf("%lf",&p[i]);
for(int i=0;i<=v;i++) for(int j=0;j<=v;j++) dis[i][j]=inf;
for(int i=1;i<=v;i++) dis[i][i]=0;
for(int i=1;i<=e;i++)
{
int ai,bi,wi;
scanf("%d%d%d",&ai,&bi,&wi);
dis[ai][bi]=min(wi,dis[ai][bi]);
dis[bi][ai]=min(wi,dis[bi][ai]);
}
for(int k=1;k<=v;k++)
for(int i=1;i<=v;i++)
for(int j=1;j<=v;j++)
dis[i][j]=min(dis[i][j],dis[i][k]+dis[k][j]);
for(int i=1;i<=n;i++) for(int j=0;j<=m;j++) for(int k=0;k<=1;k++) dp[i][j][k]=inf;
dp[1][1][1]=dp[1][0][0]=0;
for(int i=2;i<=n;i++)
{
for(int j=0;j<=min(m,i);j++)
{
dp[i][j][0]=dp[i-1][j][0]+(double)dis[c[i-1][0]][c[i][0]];
if(j>=1)
{
dp[i][j][0]=min(dp[i][j][0],p[i-1]*(dp[i-1][j][1]+(double)dis[c[i-1][1]][c[i][0]])+(1-p[i-1])*(dp[i-1][j][1]+(double)dis[c[i-1][0]][c[i][0]]));
dp[i][j][1]=min(dp[i][j][1],p[i]*(dp[i-1][j-1][0]+(double)dis[c[i-1][0]][c[i][1]])+(1-p[i])*(dp[i-1][j-1][0]+(double)dis[c[i-1][0]][c[i][0]]));
}
if(j>=2)
{
dp[i][j][1]=min(dp[i][j][1],p[i]*p[i-1]*(dp[i-1][j-1][1]+(double)dis[c[i-1][1]][c[i][1]])
+p[i]*(1-p[i-1])*(dp[i-1][j-1][1]+(double)dis[c[i-1][0]][c[i][1]])
+(1-p[i])*p[i-1]*(dp[i-1][j-1][1]+(double)dis[c[i-1][1]][c[i][0]])
+(1-p[i])*(1-p[i-1])*(dp[i-1][j-1][1]+(double)dis[c[i-1][0]][c[i][0]]));
}
}
}
double ans=inf;
for(int i=0;i<=m;i++)
ans=min(ans,min(dp[n][i][0],dp[n][i][1]));
printf("%0.2lf",ans);
return 0;
}