bzoj4720 [NOIP2016] 换教室(期望概率DP)

51 篇文章 1 订阅
13 篇文章 0 订阅

原题地址http://www.lydsy.com/JudgeOnline/problem.php?id=4720

题意:
现有v个点和e条边,每条边有边权。n个时刻,在i时刻应前往地点c[i],可申请前往地点d[i],有p[i]的几率申请成功,最多申请m次。如何分配申请使得期望经过的距离最小,求期望的最小距离。
v<=300,n,m<=2000,e<=90000
题解:
dp[i][j][k]: i 时刻,到当前时刻提交了 j 个申请,且 i 时刻 不提交/提交 的最小期望。

转移 :
 dp[i][j][0]=min(dp[i1][j][0]+dis[c[i1]][c[i]],p[i1](dp[i1][j][1]+dis[d[i1]][c[i]])+(1p[i1])(dp[i1][j][1]+dis[c[i1]][c[i]])
 dp[i][j][1]=min(p[i](dp[i1][j1][0]+dis[c[i1]][d[i]])+(1p[i])(dp[i1][j1][0]+dis[c[i1]][c[i]]),p[i]p[i1](dp[i1][j1][1]+dis[d[i1]][d[i]])+p[i](1p[i1])(dp[i1][j1][1]+dis[c[i1]][d[i]])+(1p[i])p[i1](dp[i1][j1][1]+dis[d[i1]][c[i]])+(1p[i])(1p[i1])(dp[i1][j1][1]+dis[c[i1]][c[i]]))
边界:  dp[1][1][1]=dp[1][0][0]=0

注意:输入时有重边要取最小值(WA点),每两点之间的最短路用floyed ,最终复杂度 O(v^3+mn)。

代码:

#include<cstdio>
#include<iostream>
#include<cstring>
#include<algorithm>
using namespace std;
const int N=2005;
const int M=305;
const int inf=1e6;
int dis[M][M];
int n,m,v,e;
int c[N][2];
double p[N],dp[N][N][2];
double mi(double A,double B)
{
    return A<B?A:B;
}
int main()
{
    scanf("%d%d%d%d",&n,&m,&v,&e);

    for(int i=1;i<=n;i++)   scanf("%d",&c[i][0]);
    for(int i=1;i<=n;i++)   scanf("%d",&c[i][1]);
    for(int i=1;i<=n;i++)   scanf("%lf",&p[i]);

    for(int i=0;i<=v;i++) for(int j=0;j<=v;j++) dis[i][j]=inf;
    for(int i=1;i<=v;i++)   dis[i][i]=0;
    for(int i=1;i<=e;i++)
    {
        int ai,bi,wi;
        scanf("%d%d%d",&ai,&bi,&wi);
        dis[ai][bi]=min(wi,dis[ai][bi]);
        dis[bi][ai]=min(wi,dis[bi][ai]);
    }
    for(int k=1;k<=v;k++)   
    for(int i=1;i<=v;i++)   
    for(int j=1;j<=v;j++)
    dis[i][j]=min(dis[i][j],dis[i][k]+dis[k][j]);

    for(int i=1;i<=n;i++) for(int j=0;j<=m;j++) for(int k=0;k<=1;k++) dp[i][j][k]=inf;
    dp[1][1][1]=dp[1][0][0]=0;
    for(int i=2;i<=n;i++)
    {
        for(int j=0;j<=min(m,i);j++)
        {
            dp[i][j][0]=dp[i-1][j][0]+(double)dis[c[i-1][0]][c[i][0]];
            if(j>=1)
            {
                dp[i][j][0]=min(dp[i][j][0],p[i-1]*(dp[i-1][j][1]+(double)dis[c[i-1][1]][c[i][0]])+(1-p[i-1])*(dp[i-1][j][1]+(double)dis[c[i-1][0]][c[i][0]]));
                dp[i][j][1]=min(dp[i][j][1],p[i]*(dp[i-1][j-1][0]+(double)dis[c[i-1][0]][c[i][1]])+(1-p[i])*(dp[i-1][j-1][0]+(double)dis[c[i-1][0]][c[i][0]]));
            }
            if(j>=2)
            {
                dp[i][j][1]=min(dp[i][j][1],p[i]*p[i-1]*(dp[i-1][j-1][1]+(double)dis[c[i-1][1]][c[i][1]])
                +p[i]*(1-p[i-1])*(dp[i-1][j-1][1]+(double)dis[c[i-1][0]][c[i][1]])
                +(1-p[i])*p[i-1]*(dp[i-1][j-1][1]+(double)dis[c[i-1][1]][c[i][0]])
                +(1-p[i])*(1-p[i-1])*(dp[i-1][j-1][1]+(double)dis[c[i-1][0]][c[i][0]]));
            }
        }       
    }
    double ans=inf;
    for(int i=0;i<=m;i++)
    ans=min(ans,min(dp[n][i][0],dp[n][i][1]));
    printf("%0.2lf",ans);
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值