bzoj2839 集合计数 (容斥原理+组合数)

bzoj2839 集合计数

原题地址http://www.lydsy.com/JudgeOnline/problem.php?id=2839

题意:
一个有N个元素的集合有2^N个不同子集(包含空集),现在要在这2^N个集合中取出若干集合(至少一个),使得
它们的交集的元素个数为K,求取法的方案数,答案模1000000007。(是质数喔~)

数据范围
1≤N≤1000000;0≤K≤N;

题解:
对于选出一些集合使他们的交集为k个元素,

考虑对于给定的k个元素,考虑容斥:
定义g[i]=选出一些集合使他们交集包含这k个元素和任意其他i-k个元素的方案数
ans=g[k]-g[k+1]+g[k+2]-…g[n]
这样k个元素的选取是comb(n,k)的,但是对于每种k个元素的选法,都需要一层一层地枚举包含它的各种集合。

于是考虑把这些comb(n,k)个k个元素的选法合并起来。

同样一层一层计算。
定义f[i]=选定i个数,选一些集合使他们交集元素个数包含这i个数的方案数:
那么 f[i]=22ni1 f [ i ] = 2 2 n − i − 1
(除去这i个元素,剩下n-i个元素的子集数)
那么,等价于上面的方法合并起来的,第一层(comb(n,k)种选取的g[k]的和)为 f[k]* C(n,k)*(-1)^(k-k)
那么,第二层是f[k+1]* C(n,k+1)*(-1)^(k+1-k)吗?

并不是。

因为这是comb(n,k)种选取的g[k+1]的和,每一种选取k个数的方案可能对应相同的一个选取k+1个数的方案,而在上述的计算方式中,只计算了没有计算这种重复的选取k+1个数的方案数。
而对于每个n中选i的方案,他出现在C(i,k)种g[i]的统计中,因此还要乘上C(i,k)。

所以

ans=ni=kf[i]C(i,k)C(n,i)(1)ik a n s = ∑ i = k n f [ i ] ∗ C ( i , k ) ∗ C ( n , i ) ∗ ( − 1 ) i − k

一些理解见berry大佬的博客


UPD:
回头来看,
F(i)=(ni)(22ni1) F ( i ) = ( n i ) ( 2 2 n − i − 1 )
这个 F(i) F ( i ) 中包含了 ans(k),ans(k+1)...ans(n) a n s ( k ) , a n s ( k + 1 ) . . . a n s ( n ) ans(i) a n s ( i ) 在其中贡献了 (ik) ( i k ) 次。
ans(k)=F(k)i=k+1n(ik)ans(i) a n s ( k ) = F ( k ) − ∑ i = k + 1 n ( i k ) a n s ( i )
注意到 ans(k)=(kk)ans(k) a n s ( k ) = ( k k ) a n s ( k ) ,移项得:
F(k)=i=kn(ik)ans(i) F ( k ) = ∑ i = k n ( i k ) a n s ( i )
这个就是二项式反演,参见二项式反演证明
直接得到:
ans(k)=i=kn(1)ik(ik)F(i) a n s ( k ) = ∑ i = k n ( − 1 ) i − k ( i k ) F ( i )

或者,把这个式子展开(把ans拆成f-…)可以发现 F(i) F ( i ) 的系数是 (1)id(ik) ( − 1 ) i − d ( i k )
参见Izumi的博客
—2018.3.13
代码:

#include<cstdio>
#include<iostream>
#include<algorithm>
#include<cstring>
#define LL long long
using namespace std;
const int mod=1000000007;
const int N=1000005;
int n,k,f[N],fac[N],inv[N];

int modpow(int A,int B)
{
    int ans=1; int base=A;
    for(;B;B>>=1)
    {
        if(B&1) ans=(1LL*ans*base)%mod;
        base=(1LL*base*base)%mod;
    }
    return ans;
}
void init()
{
    fac[0]=1; inv[0]=1;
    for(int i=1;i<=n;i++)
    fac[i]=(1LL*fac[i-1]*i)%mod;
    inv[n]=modpow(fac[n],mod-2);
    for(int i=n-1;i>=1;i--)
    inv[i]=(1LL*inv[i+1]*(i+1))%mod;
}
int comb(int n,int m)
{
    int iv=(1LL*inv[n-m]*inv[m])%mod;
    int ans=(1LL*fac[n]*iv)%mod;
    return ans;
}
int main()
{
    scanf("%d%d",&n,&k);
    init();
    f[n]=2; 
    for(int i=n-1;i>=k;i--)
    f[i]=(1LL*f[i+1]*f[i+1])%mod;
    LL ans=0; int s=1;
    for(int i=k;i<=n;i++)
    {
        LL now=(mod+s*((1LL*((f[i]-1+mod)%mod)*comb(i,k))%mod))%mod;
        ans=(ans+(1LL*now*comb(n,i))%mod)%mod;
        s=-s;
    }   
    printf("%lld\n",ans);

    return 0;
}
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值