bzoj3992 [SDOI2015]序列统计(NTT快速幂)

bzoj3992 [SDOI2015]序列统计

原题地址http://www.lydsy.com/JudgeOnline/problem.php?id=3992
题意:
小C有一个集合S,里面的元素都是小于M的非负整数。他用程序编写了一个数列生成器,可以生成一个长度为N的数列,数列中的每个数都属于集合S。
小C用这个生成器生成了许多这样的数列。但是小C有一个问题需要你的帮助:给定整数x,求所有可以生成出的,且满足数列中所有数的乘积mod M的值等于x的不同的数列的有多少个。小C认为,两个数列{Ai}和{Bi}不同,当且仅当至少存在一个整数i,满足Ai≠Bi。另外,小C认为这个问题的答案可能很大,因此他只需要你帮助他求出答案mod 1004535809的值就可以了。

数据范围
1<=N<=1e9,3<=M<=8000,M为质数,1<=x<=M-1,输入数据保证集合S中元素不重复,集合中的数属于[0,m-1]。

题解:

要求数的乘积为m,似乎很不好处理。
但是根据 ln xy=ln x+ln y l n   x y = l n   x + l n   y ,又因为m是质数,
可以求出原根g,用 gind[s] g i n d [ s ] 来表示集合内的数,把 s s 替换成ind[s]就把乘法转换成了加法。

于是答案就是构造出的多项式的n次幂的第ind[x]项系数。
注意由于求的是”乘积mod M的值等于x”,就是ind的乘积mod M-1 的值等于x,因此对于 i(i>=m1) i ( i >= m − 1 ) 的系数需要清零加到i%(m-1)项去。

学习了一发NTT。

代码:

#include<cstdio>
#include<iostream>
#include<algorithm>
#include<cstring>
using namespace std;
const int mod=1004535809;//479*2^21  g=3
const int N=30000;
int n,m,X,s,g,R[N],len=1,p=0,iv,G;
int ind[N],a[N],b[N],w1[N],w2[N],omg[N],_omg[N];
int modpow(int A,int B,int p)
{
    int ret=1; int base=A;
    for(;B;B>>=1)
    {
        if(B&1) ret=(1LL*ret*base)%p;
        base=(1LL*base*base)%p;
    }
    return ret;
}
inline int getg()
{
    for(int i=1,j;i<=m-1;i++)
    {
        for(j=1;j<=m-1;j++) {int x=modpow(i,j,m); if(x==1) break;}
        if(j==m-1) return i;
    }
    return -1;
}
void NTT(int *x,int opt)
{
    for(int i=0;i<len;i++) if(i<R[i]) swap(x[i],x[R[i]]);
    int *w; if(opt==1) w=omg; else w=_omg;
    for(int L=2;L<=len;L<<=1)
    {
        int l=L>>1; 
        for(int j=0;j<len;j+=L)
        for(int i=0;i<l;i++)
        {
            int y=(1LL*w[len/L*i]*x[i+j+l])%mod;
            x[i+j+l]=(x[i+j]-y+mod)%mod;
            x[i+j]=(x[i+j]+y)%mod;
        }
    }
    if(opt==-1) {for(int i=0;i<len;i++) x[i]=(1LL*x[i]*iv)%mod;}
}
void solve(int *A,int *B,int *C)
{
    for(int i=0;i<=len;i++) w1[i]=A[i],w2[i]=B[i];
    NTT(w1,1); NTT(w2,1);
    for(int i=0;i<len;i++) w1[i]=(1LL*w1[i]*w2[i])%mod,C[i]=0;
    NTT(w1,-1);
    for(int i=0;i<len;i++) C[i%(m-1)]=(C[i%(m-1)]+w1[i])%mod;
}
int main()
{
    scanf("%d%d%d%d",&n,&m,&X,&s);
    g=getg(); G=3;
    for(int i=1;i<=m-1;i++) ind[modpow(g,i,m)]=i; ind[1]=0;
    for(int i=1;i<=s;i++) {int x; scanf("%d",&x); if(x%m){a[ind[x%m]]=1;b[ind[x%m]]=1;}}
    for(p=0,len=1;len<2*m;len<<=1,p++); iv=modpow(len,mod-2,mod);
    R[0]=0; for(int i=1;i<len;i++) R[i]=(R[i>>1]>>1)|((i&1)<<(p-1));
    omg[0]=1; omg[1]=modpow(G,(mod-1)/len,mod);
    for(int i=2;i<=len;i++) omg[i]=(1LL*omg[1]*omg[i-1])%mod;
    for(int i=0;i<len;i++) _omg[i]=omg[len-i];
    for(n--;n;n>>=1)
    {
        if(n&1) solve(a,b,a);
        solve(b,b,b);
    }
    printf("%d\n",a[ind[X]]);
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值