【BZOJ3992/SDOI2015】序列统计 NTT

原题走这里

一道非常奇妙的题,操作十分神奇。
首先原题中的式子是 a1a2a3...a|S|p(modm)aiS a 1 a 2 a 3 . . . a | S | ≡ p ( m o d m ) , a i ∈ S
然而乘法是没有办法直接做FFT的,所以我们要把式子中的连乘改为连加
也就是说,给上面式子“取对数”

求出m的原根g,将上述式子中的 ai a i 和p还有原题描述中的x全部表示成g的指数
离散对数一波(其实数据很小暴力就可以了)。
上述式子就可以转化成: gA1...gAngP(modm) g A 1 . . . g A n ≡ g P ( m o d m ) 此外 x=gX x = g X
根据费马小定理: A1+...+AnP(modm1) A 1 + . . . + A n ≡ P ( m o d m − 1 )
那么就相当于多项式N次幂,同时对 xm1 x m − 1 取模,NTT一波即可
(这也许可以算上是多项式快速幂?)

简要介绍一下NTT,说白了就是带模FFT
但是难点在于:我们要把FFT中的一切运算一切数值全部投射到模P域里面
其中最大的问题就是单位根,我们要在模P域下找到对应物,也就是原根
原根就是这样的g使得g的0到P-2次幂各不相同
此外费马小定理: gP11(modP) g P − 1 ≡ 1 ( m o d P )
这两点使得原根和单位根非常相似,而在NTT的题目中,模大多是 m2k+1 m · 2 k + 1 的形式
因此,我们可以用 gx(P1)n g x ( P − 1 ) n 来代替FFT中的 e2πixn e 2 π i x n
其他的基本和FFT一样,保持运算取模就是了。
值得一提的是:本题中的模数1004535809的原根是3

此外还有一个小问题
本题的输入文件结尾似乎是没有换行符的,至少在洛谷上是这样的,这种情况下scanf和cin还有getchar都读不到,但可以用fread

代码如下:

#include <bits/stdc++.h>
#define MOD 1004535809
#define LL long long
#define getchar() *(pp++);
using namespace std;
char buf[200010],*pp=buf; 
inline int read()
{
    int x=0;char ch=getchar();
    while(ch>'9'||ch<'0')ch=getchar();
    while(ch<='9'&&ch>='0')x=x*10+ch-'0',ch=getchar();
    return x;
}
LL n,m,im,x,X,p,M,g,s[10010],a[20010],b[20010],A[20010],B[20010],w[20010];
LL qpow(int xx,int y)
{
    LL ans=1,temp=xx;
    while(y)
    {
        if(y&1)(ans*=temp)%=MOD;
        (temp*=temp)%=MOD;
        y>>=1;
    }
    return ans;
}
void init()
{
    M=m-1;
    for(LL i=1;i!=M;i<<=1,M=max(M,i));
    M<<=1;
    im=qpow(M,MOD-2);
    for(g=2;g<=m;g++)
    {
        bool flag=1;
        for(int i=1,t=g;i<m-1;i++,t=t*g%m)
        {
            if(t==1)
            {
                flag=0;
                break;
            }
        }
        if(flag)break;
    }
    for(int i=0;i<M;i++)
    {
        w[i]=qpow(3,(MOD-1)/M*i);
    }
}
void transform()
{
    for(int i=1,j=0,k=1;i<=p;i++)
    {
//      cout<<i<<endl;
        if(!s[i])continue;
        for(j=0,k=1;k!=s[i];k=k*g%m,j++);
        b[j]++;
    }
    for(int i=1;i!=x;(i*=g)%=m,X++);
}
void FFT(LL *a)
{
    for(int i=0,j=0;i!=M;i++)
    {
        if(i>j)swap(a[i],a[j]);
        for(int k=M>>1;(j^=k)<k;k>>=1);
    }
    for(int i=2;i<=M;i<<=1)
    {
        LL r=i>>1,l=M/i;
        for(int j=0;j<M;j+=i)
        {
            for(int k=0;k<r;k++)
            {
                LL t=1LL*a[j+r+k]*w[l*k]%MOD;
                a[j+r+k]=(a[j+k]-t+MOD)%MOD;
                (a[j+k]+=t)%=MOD;
            }
        }
    }
}
void MUL(LL *a,LL *b)
{
    memcpy(A,a,M*sizeof(LL));
    memcpy(B,b,M*sizeof(LL));
    FFT(A);
    FFT(B);
    for(int i=0;i<M;i++)(A[i]*=B[i])%=MOD;
    reverse(w+1,w+M);
    FFT(A);
    for(int i=0;i<M;i++)a[i]=(A[i]*im%MOD);
    reverse(w+1,w+M);
    for(int i=0;i<m-1;i++)
    {
        (a[i]+=a[i+m-1])%=MOD;
        a[i+m-1]=0;
    }
}
void qpow_for_polynomial()
{
    a[0]=1;
    while(n)
    {
        if(n&1)MUL(a,b);
        MUL(b,b);
        n>>=1;
    }
}
int main()
{
//  freopen("sdoi2015_sequence.in","r",stdin);
//  freopen("sdoi2015_sequence.out","w",stdout);
    fread(buf,sizeof(char),sizeof(buf),stdin);
    n=read(),m=read(),x=read(),p=read();
    init();
    for(int i=1;i<=p;i++)
    {
        s[i]=read();
    }
    transform();
    qpow_for_polynomial();
    cout<<a[X]<<endl;
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值