PyCharm连接WSL2搭建的Python开发环境

目录

一、开启WSL2服务

二、安装Ubuntu

三、安装Anaconda

四、构建Tensorflow_gpu环境

五、PyCharm连接到WSL2环境


使用 PyCharm 连接 WSL2 搭建 Python 开发环境的主要目的是结合 Windows 的易用性和 Linux 的开发优势,提升开发效率和体验。以下是具体原因和优势:

  • 资源隔离

WSL2 是一个独立的子系统,与 Windows 主机隔离,避免污染主机环境。

  • 避免跨平台问题

代码在 WSL2 中运行的结果与生产环境(通常是 Linux)更一致。

  • 原生兼容性

许多 Python 工具链(如编译依赖、系统库)在 Linux 下支持更好(例如 gccpython-dev)。WSL2 提供了完整的 Ubuntu 等发行版环境,避免 Windows 的兼容性问题(如某些 C 扩展的编译)。

一、开启WSL2服务

 1、开启CPU虚拟化

打开任务管理器,切换到性能,可以查看CPU虚拟化的状态,默认是禁用,需要进入Bios开启

2、启用虚拟机平台功能

点击【启动或关闭 Windows 功能】

勾选【适用于 Linux 的 Windows 子系统】和【虚拟机平台】这两项

勾选后必须要重启系统才能生效

3、设置WSL的版本为WSL2

按  Win+X 启动 终端(管理员)

设置WSL的版本为WSL2

wsl --set-default-version 2

更新WSL为最新版

wsl --update

二、安装Ubuntu

1、查看当前WSL2可安装的Linux发行版 

 2、安装Ubuntu-24.04版本

wsl --install -d Ubuntu-24.04

 3、在WIndows Terminal上,可以找到安装的发行版本

4、系统是首次启动时,需要设置一个用户名和密码

三、安装Anaconda

1、Ubuntu中执行如下命令,下载对应的Anaconda安装包

wget https://repo.anaconda.com/archive/Anaconda3-2024.10-1-Linux-x86_64.sh

2、安装Anaconda

#安装anaconda
sudo ./Anaconda3-2024.10-1-Linux-x86_64.sh

输入yes表示同意许可 

输入安装路径,变更安装目录

输入yes,表示conda 的 base 环境会在每次启动终端时自动激活

为当前用户初始化conda

sudo conda init

命令行前面出现(base),代表安装成功了

3、配置Anaconda镜像源

编辑.condarc文件

cd /usr/local/anaconda3

sudo vi .condarc

配置anaconda使用清华源,典型的配置文件示例如下:

# 设置包搜索频道(按顺序查找)
channels:
  - https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main/  # 清华主源
  - https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/  # 清华免费源
  - https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/conda-forge/  # 清华conda-forge镜像
  - conda-forge  # 社区源(备用)
  - defaults     # 官方源(兜底)

# 自定义频道别名(简化配置)
#custom_channels:
#  tuna-main: https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main/
#  tuna-cf: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/conda-forge/

# 网络与安全设置
ssl_verify: true  # 验证HTTPS证书(安全建议开启)
#proxy_servers:    # 代理设置(如有需要)
#  http: http://your-proxy:port
#  https: http://your-proxy:port

# 环境与路径配置
#envs_dirs:  # 自定义环境存储路径
#  - ~/conda_envs  # 用户目录下的环境文件夹
#pkgs_dirs:  # 包缓存路径
#  - ~/conda_pkgs

# 其他优化选项
auto_update_conda: false  # 禁止自动更新conda(避免意外中断)
channel_priority: strict  # 严格频道优先级(避免混源冲突)
show_channel_urls: true   # 显示包来源(调试用)

四、构建Tensorflow_gpu环境

1、安装NVIDIA驱动程序

为兼容使用GeForce或NVIDIA RTX/Quadro显卡,需在Windows系统上安装NVIDIA GeForce Game Ready或NVIDIA RTX Quadro Windows 11显示驱动程序,驱动程序可从 NVIDIA驱动程序 下载。

注意:这是您需要安装的唯一驱动程序。请勿在 WSL2 中安装任何 Linux 显示驱动程序。

验证NVIDIA驱动是否正常,查看显卡支持的最高CUDA版本,Windows运行如下命令

nvidia-smi

2、查询Tensorflow_gpu版本对应的环境

链接: 从源代码构建  |  TensorFlow
下滑可找到GPU版本的tensorflow所对应的环境

3、构建Tensorflow_gpu虚拟环境

#创建虚拟环境名称为tensorflow_gpu-1.14,对应的python版本3.7
conda create -n tensorflow_gpu-1.14 python=3.7

#激活环境
conda activate tensorflow_gpu-1.14

#安装CUDA
conda install cudatoolkit==10.0.130

#安装CUDNN
conda install cudnn==7.4

#安装tensorflow_gpu-1.14
conda install tensorflow-gpu==1.14.0

五、PyCharm连接到WSL2环境

PyCharm设置WSL的解释器是只有专业版才有的功能,社区版并没这个功能

1、在PyCharm的设置中选择项目里的Python解释器选项,点击添加解释器,选择WSL

2、选择环境所在的Linux系统,点击下一步

3、在左边选项栏中选择conda环境,选择的conda解释器,一般存在conda目录下的bin或者Scripts文件夹下


4、选定conda解释器后,点击加载环境,选择对应环境,点击创建即可成功连接到wsl中的conda环境了

5、成功连接到wsl中的conda环境

6、验证tensorflow_gpu环境是否安装成功

新建Python文件,运行以下代码来验证tensorflow_gpu环境是否成功安装

import tensorflow as tf
print(tf.version)
print(tf.test.is_gpu_available())

如果打印出的版本号是1.14,并且表示GPU可用,那么就说明安装成功。如果打印出的版本号不是1.14,或者GPU不可用,那么可能需要重新安装或者检查环境配置。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值