快讯 | 苹果公司实现100%绿色能源供电,覆盖办公场所和数据中心

苹果宣布在全球43个国家和地区的所有设施均已采用100%可再生能源供电。这一成就标志着苹果在环保方面的重要进展。自2014年完成大型数据中心的绿色能源改造以来,苹果已成功实现了全面绿色供电,覆盖了从总部到配送中心和零售店的所有场所。

这里写图片描述

大数据文摘作品

编译:蒋宝尚、龙牧雪

当地时间4月9日,苹果公司正式宣布全球43个国家或地区的苹果零售店、办公室、数据中心和其他场所设施已经全部采用100%可再生能源供电,在环境保护方面迈出了重要的一步。

苹果CEO蒂姆·库克转发该消息


苹果公司位于内华达州的雷诺(Reno)的数据中心由五个长的白色建筑组成,并排坐落在80号州际公路附近。它们之间由0.25英里的走廊连接,两边都是大大的房间,里面装满了200,000多台服务器。它们支撑着Siri,iCloud,Apple Music和Apple Pay的服务。


为了保持这些服务器正常工作,需要大功率且不间断的电力供应。因此只有大规模的电力供应中心才能满足要求。





苹果最近建立的第一座太阳能农场位于位于内华达州耶灵顿镇附近荒凉的乡村,那里除了平坦、干燥的土地外,还有低矮、锯齿状的山丘和蓝色的沙漠天空。那里有大量的太阳能组件,它们用长长的凹面镜子捕捉太阳的能量,并将其聚焦到坐在它们后面的黑色小光电池线上。


2014年,苹果完成了对所有耗电量巨大的计算中心的可再生能源改造。


现在,苹果公司已经完成了100%绿色供电——从拥有地球上最大太阳能屋顶的新Apple Park总部,到其在世界各地的配送中心和零售店。





苹果表示,目前在11个国家拥有25个正在运行的可再生能源项目,其中15个正在建设中。就在八年前,只有16%的设施由可再生能源提供动力。到2015年,这一数字已经上升到93%,然后到2016年达到96%。同样,在2013年,苹果通过聘请美国前环保局管理员Lisa Jackson担任环境、政策和社会倡议副总裁,表明其对绿色倡议的严肃态度。


尽管苹果在建设绿色能源基础设施方面发挥着主导作用,但它是计算硬件、软件和服务的制造商,而不是能源公司。苹果绿色供电的主要模式是与当地的公用事业公司或独立的绿色电力供应商合作。由于可再生能源的较低成本,这些厂商往往愿意在建设新能源项目中担任更重要的角色、承担更大的风险。


而苹果担任的角色,往往是向厂商作出购买长达20年电力的承诺。这一承诺不仅有助于绿色能源项目的开发商获得融资,还能为未来几年的苹果提供低且可预测的能源价格。





苹果并不是唯一一家迅速发展绿色举措的科技公司。而且,由于谷歌、Facebook和亚马逊的业务比苹果更依赖互联网服务,他们购买的能源要比苹果多得多。谷歌是首批推动可再生能源发展的公司之一,也是全球最大的可再生能源购买者。Facebook表示,它超额完成对数据中心进行25%的绿色能源供应的目标,将在2018年底计划实现50%的供应。


2015年,苹果启动了一项计划,希望供应商也能倾向绿色能源。去年,有14家公司承诺在与苹果公司合作的项目中使用100%绿色能源电力供应。


苹果庞大的组件供应商和合约制造商网络在iPhone生产中发挥着巨大作用。他们都深深意识到,绿色环保是一个机会,也是一个挑战。





苹果负责环境的VP Lisa Jackson对绿色能源的未来持乐观态度。她在接受采访时说:“随着市场的不断发展,我没有看到任何阻止全球低碳能源发展的力量。在未来某个时候,你会看到各国积极倡导这项措施。”


原文链接:

https://www.fastcompany.com/40554151/how-apple-got-to-100-renewable-energy-the-right-way

【源码免费下载链接】:https://renmaiwang.cn/s/os2te 大整数乘法是计算机科学中的一个重要领域,特别是在算法设计数学计算中有着广泛应用。它涉及到处理超过标准整型变量范围的数值运算。在C++编程语言中,处理大整数通常需要自定义数据结构算法,因为内置的`int`、`long long`等类型无法满足大整数的存储计算需求。以下是对这个主题的详细阐述:1. **大整数数据结构**: 在C++中,实现大整数通常采用数组或链表来存储每一位数字。例如,可以使用一个动态分配的数组,每个元素表示一个位上的数字,从低位到高位排列。这种数据结构允许我们方便地进行加减乘除等操作。2. **乘法算法**: - **暴力乘法**:最直观的方法是类似于小学的竖式乘法,但效率较低,时间复杂度为O(n^2)。 - **Karatsuba算法**:由Alexander Karatsuba提出,将两个n位数的乘法转化为三个较小的乘法,时间复杂度为O(n^1.585)。 - **Toom-Cook算法**:比Karatsuba更通用,通过多项式插值分解进行计算,有不同的变体,如Toom-3、Toom-4等。 - **快速傅里叶变换(FFT)**:当处理的大整数可以看作是多项式系数时,可以利用FFT进行高效的乘法,时间复杂度为O(n log n)。FFT在数论密码学中尤其重要。3. **算法实现**: 实现这些算法时,需要考虑如何处理进位、溢出等问题,以及如何优化代码以提高效率。例如,使用位操作可以加速某些步骤,同时要确保代码的正确性可读性。4. **源代码分析**: "大整数乘法全解"的源代码应包含了上述算法的实现,可能还包括了测试用例性能比较。通过阅读源码,我们可以学习如何将理论算法转化为实际的程序,并理解各种优化技巧。5. **加说明**: 通常,源代码附带的说明会解释
内容概要:本文详细介绍了一个基于Java与Vue技术栈的向量数据库语义检索与相似文档查重系统的设计与实现。系统通过集成BERT等深度学习模型将文本转化为高维语义向量,利用Milvus等向量数据库实现高效存储与近似最近邻检索,结合前后端分离架构完成从文档上传、向量化处理、查重分析到结果可视化的完整流程。项目涵盖需求分析、系统架构设计、数据库建模、API接口规范、前后端代码实现及部署运维等多个方面,并提供了完整的代码示例模块说明,支持多格式文档解析、智能分段、自适应查重阈值、高亮比对报告生成等功能,具备高扩展性、安全性多场景适用能力。; 适合人群:具备一定JavaVue开发基础的软件工程师、系统架构师以及从事自然语言处理、知识管理、内容安全等相关领域的技术人员,尤其适合高校、科研机构、企业IT部门中参与智能文档管理系统开发的专业人员。; 使用场景及目标:①应用于学术论文查重、企业知识产权保护、网络内容监控、政务档案管理等需要高精度语义比对的场景;②实现深层语义理解下的文档查重,解决传统关键词匹配无法识别语义改写的问题;③构建可扩展、高可用的智能语义检索平台,服务于多行业数字化转型需求。; 阅读建议:建议读者结合提供的完整代码结构与数据库设计进行实践操作,重点关注文本向量化、向量数据库集成、前后端协同逻辑及安全权限控制等核心模块。在学习过程中应逐步部署运行系统,调试关键接口,深入理解语义检索与查重机制的工作原理,并可根据实际业务需求进行功能扩展与模型优化。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值