pytorch常用函数理解

本博客用来记录常用的torch中的函数

torch.max

output = torch.max(x,dim=1)

  • input输入的是一个tensor

  • dim是max函数索引的维度0/1,0是每列的最大值,1是每行的最大值

  • 返回的是两个值:一个是每一行或列最大值的tensor组,另一个是最大值所在的位置(索引)

x = torch.rand(3,5)
# tensor([[0.3168, 0.8239, 0.1350, 0.8047, 0.8741],
#         [0.8606, 0.4046, 0.3248, 0.0284, 0.8336],
#         [0.3513, 0.4505, 0.7712, 0.2254, 0.2427]])

torch.max(x,0) # 返回值包括每一列的最大值和最大值所在的索引
# torch.return_types.max(
# values=tensor([0.8606, 0.8239, 0.7712, 0.8047, 0.8741]),
# indices=tensor([1, 0, 2, 0, 0]))

torch.max(x,1) # 返回值包括每一行的最大值和最大值所在的索引
# torch.return_types.max(
# values=tensor([0.8741, 0.8606, 0.7712]),
# indices=tensor([4, 0, 2]))

torch.max(x,0)[0]  # 返回每一列的最大值
# tensor([0.8606, 0.8239, 0.7712, 0.8047, 0.8741])

torch.max(x,0)[1] # 返回每一列最大值的索引
# tensor([1, 0, 2, 0, 0])

pytorch的模型保存与加载

  • torch.save:保存序列化的对象到
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值