何为非侵入式负荷分解-深度学习算法实现

1 前言

        做负荷分解的网络很多,本篇用contrib中的几个网络对AMPds数据集进行训练和测试。本篇内容较短。仅展示部分网络的代码和结果。        

2 数据集

        AMPds数据集所选电器见下表。电器选择原则如下:

        1)所选电器种类丰富,包括二态电器(如电视、冰箱)、多态电器(如洗衣机、洗碗机),这些电器具有代表性。

        2)数据集中其他分支,如卧室,厨房,电子工作台等不具有代表性。

        3)所选电器的功耗占据了家庭住户中绝大部分的电力功耗。

        电器描述

电器

描述

TVE

电视

HPE

热泵

FRE

强制空气炉:风扇和恒温器

FGE

冰箱

DWE

洗碗机

CWE

洗衣机

CDE

干衣机

2 深度学习网络代码

seq2seq

def seq2seq(window_length):

    model = Sequential()
    # 1D Conv
    model.add(Conv1D(30,10,activation="relu",input_shape=(window_length,1),strides=2))
    model.add(Conv1D(30, 8, activation='relu', strides=2))
    model.add(Conv1D(40, 6, activation='relu', strides=1))
    model.add(Conv1D(50, 5, activation='relu', strides=1))
    model.add(Dropout(.2))
    model.add(Conv1D(50, 5, activation='relu', strides=1))
    model.add(Dropout(.2))
    model.add(Flatten())
    model.add(Dense(1024, activation='relu'))
    model.add(Dropout(.2))
    model.add(Dense(window_length))
    model.compile(loss='mse', optimizer='adam')
    return model

seq2point

def seq2point(window_length):
    # Model architecture
    model = Sequential()
    model.add(Conv1D(30,10,activation="relu",input_shape=(window_length,1),strides=1))
    model.add(Conv1D(30, 8, activation='relu', strides=1))
    model.add(Conv1D(40, 6, activation='relu', strides=1))
    model.add(Conv1D(50, 5, activation='relu', strides=1))
    model.add(Dropout(.2))
    model.add(Conv1D(50, 5, activation='relu', strides=1))
    model.add(Dropout(.2))
    model.add(Flatten())
    model.add(Dense(1024, activation='relu'))
    model.add(Dropout(.2))
    model.add(Dense(1))
    model.compile(loss='mse', optimizer='adam')  # ,metrics=[self.mse])
    return model

dae

def dae(window_length):
    model = Sequential()
    model.add(Conv1D(8, 4, activation="linear", input_shape=(window_length, 1), padding="same", strides=1))
    model.add(Flatten())
    model.add(Dense((window_length)*8, activation='relu'))
    model.add(Dense(128, activation='relu'))
    model.add(Dense((window_length)*8, activation='relu'))
    model.add(Reshape(((window_length), 8)))
    model.add(Conv1D(1, 4, activation="linear", padding="same", strides=1))
    model.compile(loss='mse', optimizer='adam')
    return model

3 结果展示

        所有模型的窗口大小统一为256,256为随意选的。

CDE

DWE

FRE

HPE

TVE

        从分解结果可

<think>好的,我需要回答用户关于图像深度学习的定义、原理和应用场景的问题。首先,根据用户提供的引用内容,我需要整合相关信息,并确保结构清晰,符合用户的要求。 首先,定义部分。引用[2]提到卷积神经网络(CNN)是深度学习的代表算法之一,广泛应用于图像处理。因此,图像深度学习的定义应该围绕使用深度神经网络,特别是CNN来处理图像数据,进行特征学习和模式识别。 接下来是原理部分。引用[1]详细描述了图像分割的三个层次,其中第三层提到使用CNN如U-Net和Mask R-CNN进行对象级分割。引用[2]解释了CNN的结构,包括卷积层、池化层和全连接层的作用。此外,引用[3]提到目标检测结合分类和定位,使用边界框标记多个对象。这些内容需要整合到原理部分,说明CNN如何通过多层结构自动提取特征,以及其在分类、检测和分割中的应用。 应用场景方面,引用[1]提到医学图像和自动驾驶,引用[4]举了肺癌CT识别的例子,引用[3]讨论了目标检测在自动驾驶和安防中的应用。需要将这些例子分类整理,如医疗诊断、自动驾驶、安防监控、图像增强等。 同时,用户要求生成相关问题,我需要根据内容提出相关的问题,例如技术细节、优化方法和应用实例。 需要确保使用正确的中文表达,行内公式用$...$,独立公式用$$...$$,并检查LaTeX语法是否正确。此外,引用标识要自然地添加到段落末尾,如[^1][^2][^3][^4]。 最后,确保回答结构清晰,分点明确,帮助用户逐步理解图像深度学习的各个方面。</think>### 图像深度学习的定义、原理及应用场景 #### 一、定义 图像深度学习是**基于深度神经网络(尤其是卷积神经网络,CNN)的计算机视觉技术**,通过多层非线性处理单元自动学习图像中的特征表达,完成分类、检测、分割等任务[^2][^3]。 --- #### 二、原理 1. **核心架构:卷积神经网络(CNN)** - **卷积层**:利用滤波器提取局部特征(如边缘、纹理),通过$W \ast X + b$计算特征图 - **池化层**:降低维度并保留关键信息,例如最大池化$\max(x_{i:i+k}, x_{j:j+k})$ - **全连接层**:将高级特征映射到分类/回归结果 $$ \text{输出} = \sigma\left( \sum_{i=1}^n w_i x_i + b \right) \quad (\sigma为激活函数) $$ 2. **特征学习机制** - 低层学习基础特征(如颜色、边缘) - 高层组合特征形成语义概念(如“车轮”“人脸”)[^2] 3. **关键任务实现** - **目标检测**:结合区域建议(如Faster R-CNN)和边界框回归[^3] - **图像分割**:通过U-Net等结构实现像素级预测[^1] --- #### 三、应用场景 | 领域 | 典型应用 | 技术方案 | 案例说明 | |----------------|---------------------------------------|--------------------------|----------------------------------------| | **医疗诊断** | 肺癌CT图像识别 | 3D CNN分析病灶特征 | 提高早期肺癌检出率[^4] | | **自动驾驶** | 实时目标检测与语义分割 | YOLO + Mask R-CNN | 识别行人、车辆及可行驶区域 | | **工业质检** | 缺陷检测 | 自编码器异常检测 | 电子元件表面划痕识别 | | **图像增强** | 超分辨率重建 | SRGAN对抗生成网络 | 将低清医学影像提升至4K分辨率 | | **安防监控** | 多目标跟踪 | DeepSORT算法 | 商场人流统计与异常行为预警 | ---
评论 9
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

爱钻研的电气人

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值