一 :实验内容
正所谓工欲善其事,必先利其器,我们在开始机器学习正式实验之前需要把我们的电脑环境配置好。
配置机器学习基本环境步骤
1.安装IDE(我由于之前就配置好了,就用自己的pycharm)
2.安装Annaconda
3.建立conda虚拟环境
4.一些conda命令
二 :安装IDE(pycharm为例)
pycharm windows版本下载地址:下载地址,下载社区版本(日常学习使用够用了),专业版是收费的。
下载完成后点击安装,一路都next至该页面配置自己的安装位置。
安装好打开pycharm结果为(图片中为我自己的项目)
三 : 安装Annaconda
Anaconda能够帮助我们更好地管理我们的python环境。只要是编写python程序,Anaconda都是一个好的选择。它创立虚拟环境,不影响我们自己的电脑环境,很方便。它是机器学习和深度学习的必备应用。
下载地址,注意选择与自己电脑配置相同的版本,最好选择python 3.7版本,下载完按照提示进行安装。
配置注意地方:
上面这个选项为conda环境为只用于本次登录电脑用户, 下面为电脑所有用户
将conda加入到系统环境变量
安装成功win+r输入cmd,再输入conda结果
该结果为安装成功
四 :conda虚拟环境安装
conda create -n test python=x.x
#安装自己想要的python版本以及自己虚拟环境的名字
创建成功查看虚拟环境列表
conda env list
五 :下面给大家一些基础的conda命令:
1、Python创建虚拟环境
anaconda命令创建python版本为x.x,名字为test的虚拟环境。test文件可以在Anaconda安装目录envs文件下找到。
conda create -n test python=x.x
# conda create -n pytorch python=3.9
2、激活或者切换虚拟环境(进入)
Linux: source activate test
Windows: conda activate test
3、对虚拟环境中安装额外的包
conda install -n test [package]
#如果 conda 有的 package,推荐用 conda 安装。conda 没有的,再用 pip 安装
1)查看安装了哪些包
conda list
2)查看当前存在哪些虚拟环境
conda env list
conda info -e
3)检查更新当前conda
conda update conda
4)关闭虚拟环境(即从当前环境退出返回使用PATH环境中的默认python版本)
knn(k)
deactivate env_name
5)或者`activate root`切回root环境
Linux下:source deactivate
6)删除虚拟环境
conda remove -n your_env_name --all
7)删除环境钟的某个包
conda remove --name $your_env_name $package_name
注意:安装的时候是用pip 安装, 卸载的时候也需要pip uninstall
设置国内镜像
http://Anaconda.org的服务器在国外,安装多个packages时,conda下载的速度经常很慢。清华TUNA镜像源有Anaconda仓库的镜像,将其加入conda的配置即可:
# 添加Anaconda的TUNA镜像
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/
# TUNA的help中镜像地址加有引号,需要去掉
# 设置搜索时显示通道地址
conda config --set show_channel_urls yes
恢复默认镜像
conda config --remove-key channels
下载opencv:
pip install -i https://pypi.tuna.tsinghua.edu.cn/simple opencv-python==4.5.1.48
六 :线性回归下demo:
import numpy as np
from sklearn.linear_model import LinearRegression
# 载入数据
data = np.loadtxt('data.csv', delimiter=',')
# 划分数据集
X = data[:, :-1]
y = data[:, -1]
# 创建模型
model = LinearRegression()
# 训练模型
model.fit(X, y)
# 预测
print(model.predict([[5]]))
回归结果: