机器学习上机第一课(9.12)

一 :实验内容

        正所谓工欲善其事,必先利其器,我们在开始机器学习正式实验之前需要把我们的电脑环境配置好。

           配置机器学习基本环境步骤

                1.安装IDE(我由于之前就配置好了,就用自己的pycharm)

                2.安装Annaconda

                3.建立conda虚拟环境

                4.一些conda命令

二 :安装IDE(pycharm为例)

          pycharm windows版本下载地址:下载地址,下载社区版本(日常学习使用够用了),专业版是收费的。

        下载完成后点击安装,一路都next至该页面配置自己的安装位置。

c5112f4d68a44dc790dda6efb8fd7a82.jpeg

        安装好打开pycharm结果为(图片中为我自己的项目)

0395618d262f42e8b2cb6e45459e04bb.png

三 : 安装Annaconda

        Anaconda能够帮助我们更好地管理我们的python环境。只要是编写python程序,Anaconda都是一个好的选择。它创立虚拟环境,不影响我们自己的电脑环境,很方便。它是机器学习和深度学习的必备应用。

       下载地址,注意选择与自己电脑配置相同的版本,最好选择python 3.7版本,下载完按照提示进行安装。

配置注意地方:

        上面这个选项为conda环境为只用于本次登录电脑用户, 下面为电脑所有用户

                        81cf8ed926a64efeaee5b16daeb61494.jpeg

                          将conda加入到系统环境变量

                             efa371cedad84baebf6a44ac412efbc4.png

                        安装成功win+r输入cmd,再输入conda结果

                              1e5558cb581e4b7f9a57db4e7a77ae30.png

该结果为安装成功

四 :conda虚拟环境安装

conda create -n test python=x.x

#安装自己想要的python版本以及自己虚拟环境的名字

       创建成功查看虚拟环境列表

conda env list

ff7f923505ed420fbb6dac75f09a1ac5.png

五 :下面给大家一些基础的conda命令:

1、Python创建虚拟环境
        anaconda命令创建python版本为x.x,名字为test的虚拟环境。test文件可以在Anaconda安装目录envs文件下找到。

conda create -n test python=x.x
# conda create -n pytorch python=3.9


2、激活或者切换虚拟环境(进入)

Linux:  source activate test
Windows: conda activate test

3、对虚拟环境中安装额外的包

conda install -n test [package]
#如果 conda 有的 package,推荐用 conda 安装。conda 没有的,再用 pip 安装


1)查看安装了哪些包

conda list


2)查看当前存在哪些虚拟环境

conda env list
conda info -e


3)检查更新当前conda

conda update conda

4)关闭虚拟环境(即从当前环境退出返回使用PATH环境中的默认python版本)

knn(k)

deactivate env_name


5)或者`activate root`切回root环境

Linux下:source deactivate

6)删除虚拟环境

conda remove -n your_env_name --all

7)删除环境钟的某个包

conda remove --name $your_env_name  $package_name


注意:安装的时候是用pip 安装, 卸载的时候也需要pip uninstall

设置国内镜像

http://Anaconda.org的服务器在国外,安装多个packages时,conda下载的速度经常很慢。清华TUNA镜像源有Anaconda仓库的镜像,将其加入conda的配置即可:
# 添加Anaconda的TUNA镜像
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/
# TUNA的help中镜像地址加有引号,需要去掉
# 设置搜索时显示通道地址
conda config --set show_channel_urls yes

恢复默认镜像

conda config --remove-key channels

下载opencv:

pip install -i https://pypi.tuna.tsinghua.edu.cn/simple opencv-python==4.5.1.48

六 :线性回归下demo:

        

import numpy as np
from sklearn.linear_model import LinearRegression

# 载入数据
data = np.loadtxt('data.csv', delimiter=',')
# 划分数据集
X = data[:, :-1]
y = data[:, -1]

# 创建模型
model = LinearRegression()

# 训练模型
model.fit(X, y)

# 预测
print(model.predict([[5]]))

回归结果:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值