写在前面:本专栏是为了应付博弈论期末考试所做的一个记录,旨在督促自己使用规范化流程和语言去对数学定理进行证明、对数学问题进行求解,如有不当之处,请广大网友批评指正。
证明参考与来源:《博弈论》-Michael Maschler
棋类游戏的三择一定理:
要说明这个问题,首先要定义规则明确的棋类游戏的博弈模型。
首先明确规则:
国际象棋博弈有两个参与人,传统上称之为白棋和黑棋,在比赛的开始,每个参与人在棋盘上都有16枚棋子,每个棋子都有自身的行进规则,白棋先走,黑棋后走,双方轮流走棋,一次走一步棋,一局国际象棋有以下三个可能的结果:
- 白棋胜,条件是白棋将死黑棋的王,同时白棋自己的王没有被吃掉
- 黑棋胜,条件是黑棋将死白棋的王,同时黑棋自己的王没有被吃掉
- 黑白双方平局。
平局的判定条件:
- 轮到黑棋走棋,黑王没有被将军,但却没有合法的移动。
- 轮到白棋走棋,白王没有被将军,但同样没有合法的移动。
- 黑白双方同意达成平局。
- 棋面(board position)已经排除双方胜利的可能(双方都无法将死对方的王)。
- 双方在连续50个回合内都没有吃掉对方任何一子,并且未移动兵,轮走一方宣布和棋。
- 相同的棋面出现三次。
随后定义数学符号语言:
棋面(board position):白黑双方每一颗棋子的身份和在棋盘上的位置。
棋局态势(game situation):将白黑双方每一回合产生的棋面记录下来,形成的一个序列。
棋面集合无法完整记录棋局的运转,仅仅是所有可能的列举,而棋局态势作为棋面的时间步序列,可以完整记录一个棋局。
我们用X来表示所有可能出现的棋面的集合,某一个棋面用x∈X来表示。
所有棋局态势的集合用H来表示,某一个棋局态势用α∈H来表示,其中
这里的m意为“中间步”,n意为最后的终结步。
一个棋局态势α必须满足的条件是:
必须是开局棋面;(也就是必须是规则规定的初始的棋面)
- 对于任意一个偶数整数m,棋面
到
是通过白方的一步合法移动得到的;
- 对于任意一个奇数整数m,棋面
到
是通过黑方的一步合法移动得到的;
策略的描述和定义:
白方策略:
要求棋面
到
是通过白方的一步合法移动得到的,所有白方策略的集合用
表示。
黑方策略:
要求棋面
到
是通过黑方的一步合法移动得到的,所有白方策略的集合用
表示。
三择一定理的内容:
棋类游戏,有且只有以下一种情况成立:
- 白方有必胜策略
- 黑方有必胜策略
- 白黑双方有至少平局策略
证明方法:符号逻辑
首先定义符号
- X是一个有限集合;
是X上的抽象逻辑公式;
- ∀表示任取,∃表示存在,¬表示取反。
博弈树(game tree):棋局态势集合H可以形象化为树形图,某一个棋局态势α∈H称之为博弈树的顶点(vertices)。
根顶点(root vertex):
称之为顶点。
顶点的子顶点(Children vertices of a vertex):∀α∈H
顶点的后代顶点(Descendant vertices of a vertex):∀α∈H
叶子(leaf):博弈完成时候的棋局态势。(注意:必须是棋局分出胜负后的最后的终局才能称作“叶子”)
从顶点α开始的子博弈树(subgame beginning at α):∀α∈H,子博弈Γ(α)是以α为根顶点,结合其后代顶点构成的子树。
一般用
来表示子博弈中的顶点数量。
“子”为“儿子”,后代则为“孙,重孙......”,但“子”也算作后代。
接下来开始证明:
主要思路是对子博弈Γ(α)顶点的数量进行归纳。
STEP1:
假设α是满足
=1的顶点,那么可以得到α是终局态势(叶子),此时有三种结果:
- 白方胜-此时∅为白方制胜策略
- 黑方胜-此时∅为黑方制胜策略
- 黑白平局-此时双方至少平局策略为∅
那么α满足三择一定理。
继续讨论
STEP2:
假设α是满足
>1的顶点,由归纳法,满足
<
的所有子博弈Γ(β)都满足三择一定理。
不妨设白棋在子博弈Γ(α)中先手,那么从α出发所能达到的任何棋面β都满足
<
,在对应的子博弈Γ(β)中
STEP3:
讨论:
1.如果存在
使得白方在子博弈Γ(
)中有一个必胜策略
,那么白方在博弈Γ(α)中有必胜策略,此时2成立与否1均成立。
2.如果任意
使得黑方在子博弈Γ(
)中有一个必胜策略
,那么黑方在博弈Γ(α)中有必胜策略
3.讨论
若1不成立,如果任意
都无法使得白方在子博弈Γ(
)中有一个必胜策略,那么黑方在这个子博弈中有必胜策略,或者白黑双方有至少平局策略。
若2不成立,存在
使得黑方在子博弈Γ(
)中没有必胜策略,此时讨论1成立的情况没有意义,若1不成立,此时白方没有必胜策略,双方均无法必胜,此时白黑双方在子博弈Γ(
)有至少平局策略
。
因此,在3中的几种情形中白黑双方在子博弈Γ(α)中均存在至少平局策略。
证毕。
由于在α顶点时,白方先手,因此,只需要α的子节点有一个节点可以通向必胜策略即可证明白方有必胜策略。
同时,在α的所有子节点中,黑方必须都有必胜策略,才能够证明黑方可以有必胜策略,否则白方只需走没有必胜策略的节点即可打败黑方。即先手优势。