博弈论-棋类游戏三择一定理的证明

写在前面:本专栏是为了应付博弈论期末考试所做的一个记录,旨在督促自己使用规范化流程和语言去对数学定理进行证明、对数学问题进行求解,如有不当之处,请广大网友批评指正。

证明参考与来源:《博弈论》-Michael Maschler


棋类游戏的三择一定理:

要说明这个问题,首先要定义规则明确的棋类游戏的博弈模型

首先明确规则:

国际象棋博弈有两个参与人,传统上称之为白棋和黑棋,在比赛的开始,每个参与人在棋盘上都有16枚棋子,每个棋子都有自身的行进规则,白棋先走,黑棋后走,双方轮流走棋,一次走一步棋,一局国际象棋有以下三个可能的结果:

  1. 白棋胜,条件是白棋将死黑棋的王,同时白棋自己的王没有被吃掉
  2. 黑棋胜,条件是黑棋将死白棋的王,同时黑棋自己的王没有被吃掉
  3. 黑白双方平局。

平局的判定条件:

  • 轮到黑棋走棋,黑王没有被将军,但却没有合法的移动。
  • 轮到白棋走棋,白王没有被将军,但同样没有合法的移动。
  • 黑白双方同意达成平局。
  • 棋面(board position)已经排除双方胜利的可能(双方都无法将死对方的王)。
  • 双方在连续50个回合内都没有吃掉对方任何一子,并且未移动兵,轮走一方宣布和棋。
  • 相同的棋面出现三次。

随后定义数学符号语言:

棋面(board position):白黑双方每一颗棋子的身份和在棋盘上的位置。

棋局态势(game situation):将白黑双方每一回合产生的棋面记录下来,形成的一个序列。

棋面集合无法完整记录棋局的运转,仅仅是所有可能的列举,而棋局态势作为棋面的时间步序列,可以完整记录一个棋局。

我们用X来表示所有可能出现的棋面的集合,某一个棋面用x∈X来表示。

所有棋局态势的集合用H来表示,某一个棋局态势用α∈H来表示,其中

\alpha =\left ( x_{0}, x_{1},..., x_{m} ,...,x_{n} \right ),n\in N,x_{m}\in X,1\leqslant m\leqslant n

这里的m意为“中间步”,n意为最后的终结步。

一个棋局态势α必须满足的条件是:

  1. {x_{0}}必须是开局棋面;(也就是必须是规则规定的初始的棋面)
  2. 对于任意一个偶数整数m,棋面{x_{m}}{x_{m+1}}是通过白方的一步合法移动得到的;
  3. 对于任意一个奇数整数m,棋面{x_{m}}{x_{m+1}}是通过黑方的一步合法移动得到的;

策略的描述和定义:

白方策略:S_{w}:H_{even}\rightarrow X

要求棋面{x_{n}}{x_{n +1}}是通过白方的一步合法移动得到的,所有白方策略的集合用{\Omega_{w}}表示。

S_{w}\left ( \alpha \right )=x_{n+1},\alpha =\left ( x_{0} ,...,x_{n}\right ),n\equiv 0(mod 2))

黑方策略:S_{b}:H_{odd}\rightarrow X

要求棋面{x_{n}}{x_{n +1}}是通过黑方的一步合法移动得到的,所有白方策略的集合用{\Omega_{b}}表示。

S_{b}\left ( \alpha \right )=x_{n+1},\alpha =\left ( x_{0} ,...,x_{n}\right ),n\equiv 1(mod 2))

三择一定理的内容:

棋类游戏,有且只有以下一种情况成立:

  1. 白方有必胜策略
  2. 黑方有必胜策略
  3. 白黑双方有至少平局策略

证明方法:符号逻辑

首先定义符号

  1. X是一个有限集合;
  2. A\left ( x \right )是X上的抽象逻辑公式;
  3. ∀表示任取,∃表示存在,¬表示取反。

博弈树(game tree):棋局态势集合H可以形象化为树形图,某一个棋局态势α∈H称之为博弈树的顶点(vertices)。

根顶点(root vertex):\alpha =\left ( x_{0} \right )\in H称之为顶点。

顶点的子顶点(Children vertices of a vertex):∀α∈H

顶点的后代顶点(Descendant vertices of a vertex):∀α∈H

叶子(leaf):博弈完成时候的棋局态势。(注意:必须是棋局分出胜负后的最后的终局才能称作“叶子”)

从顶点α开始的子博弈树(subgame beginning at α):∀α∈H,子博弈Γ(α)是以α为根顶点,结合其后代顶点构成的子树。

一般用n_{\alpha }来表示子博弈中的顶点数量。

“子”为“儿子”,后代则为“孙,重孙......”,但“子”也算作后代。

接下来开始证明:

主要思路是对子博弈Γ(α)顶点的数量进行归纳。

STEP1:

假设α是满足n_{\alpha }=1的顶点,那么可以得到α是终局态势(叶子),此时有三种结果:

  1. 白方胜-此时∅为白方制胜策略
  2. 黑方胜-此时∅为黑方制胜策略
  3. 黑白平局-此时双方至少平局策略为∅

那么α满足三择一定理。

继续讨论

STEP2:

假设α是满足n_{\alpha }>1的顶点,由归纳法,满足n_{\beta }<n_{\alpha }的所有子博弈Γ(β)都满足三择一定理。


不妨设白棋在子博弈Γ(α)中先手,那么从α出发所能达到的任何棋面β都满足n_{\beta }<n_{\alpha },在对应的子博弈Γ(β)中 

\forall \beta \in C\left ( \alpha \right ),n_{\beta }< n_{\alpha }

STEP3:

讨论:

1.如果存在\beta_{0}\in C\left ( \alpha \right )使得白方在子博弈Γ(\beta _{0})中有一个必胜策略S_{w},那么白方在博弈Γ(α)中有必胜策略,此时2成立与否1均成立。

\alpha \rightarrow \beta _{0}\rightarrow S_{w}

2.如果任意\beta_{}\in C\left ( \alpha \right )使得黑方在子博弈Γ(\beta _{})中有一个必胜策略S_{b},那么黑方在博弈Γ(α)中有必胜策略

\alpha \rightarrow \beta _{}\rightarrow S_{b}

3.讨论

若1不成立,如果任意\beta_{}\in C\left ( \alpha \right )都无法使得白方在子博弈Γ(\beta _{})中有一个必胜策略,那么黑方在这个子博弈中有必胜策略,或者白黑双方有至少平局策略。

若2不成立,存在\beta_{0}\in C\left ( \alpha \right )使得黑方在子博弈Γ(\beta _{0})中没有必胜策略,此时讨论1成立的情况没有意义,若1不成立,此时白方没有必胜策略,双方均无法必胜,此时白黑双方在子博弈Γ(\beta _{0})有至少平局策略\left ( S_{w},S_{b} \right )

因此,在3中的几种情形中白黑双方在子博弈Γ(α)中均存在至少平局策略。

证毕。

由于在α顶点时,白方先手,因此,只需要α的子节点有一个节点可以通向必胜策略即可证明白方有必胜策略。

同时,在α的所有子节点中,黑方必须都有必胜策略,才能够证明黑方可以有必胜策略,否则白方只需走没有必胜策略的节点即可打败黑方。即先手优势。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值