博弈论-Chomp游戏的必胜策略证明

问题描述:

证明:对每一个有限的n×m(n>1或m>1)Chomp游戏,先手局中人I有必胜策略。(由于1×1情况下先手必输,所以不做讨论)

首先介绍Chomp游戏

Chomp(大吃特吃)是一个双人游戏,有 𝑚×𝑛 块曲奇饼排成一个矩形格状,称作棋盘。两个玩家轮流自选吃掉一块还剩下的曲奇饼,而且要把它右边和下面所有的曲奇饼都被取走(如果存在)。如果不吃左上角的那一块曲奇饼(位置记为(1, 1))就没有其他选择的玩家为失败。

下图展示了一个棋盘为 4×6 的Chomp游戏的完整过程:

  • (a)是初始情况;
  • (b)表示玩家一吃掉位置为(3, 3)的曲奇饼;
  • (c)表示玩家二吃掉位置为(1, 4)的曲奇饼;
  • (d)表示玩家一吃掉位置为(1, 2)的曲奇饼;
  • (e)表示玩家二吃掉位置为(2, 1)的曲奇饼;
  • (f)表示玩家一在游戏中落败。

下面证明:除去1×1大小的棋盘外,其它大小的棋盘,先手必定存在必胜策略。

首先需要认定两个前提条件:

1.游戏不可能平局,因为(1,1)处的曲奇饼干必定会被取到。

2.由于每一步至少吃掉一块曲奇饼干,所以游戏在至多nm步后必定结束。

下面证明:

假设后手能胜

也就是说后手有必胜策略S,使得无论先手第一次取哪个石子,后手都能获得最后的胜利。那么现在假设先手吃掉最右下角的曲奇(n,m),接下来后手通过某种取法使得自己进入必胜的局面。但事实上,先手在第一次取的时候就可以和后手这次取的一样,进入必胜局面了,与假设矛盾。

由于吃掉曲奇时必须吃掉选定曲奇的右和下所有曲奇,因此可以做到完全模仿后手行为。

REFERENCE:https://zhuanlan.zhihu.com/p/30377770

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值