问题描述:
证明:对每一个有限的n×m(n>1或m>1)Chomp游戏,先手局中人I有必胜策略。(由于1×1情况下先手必输,所以不做讨论)
首先介绍Chomp游戏
Chomp(大吃特吃)是一个双人游戏,有 𝑚×𝑛 块曲奇饼排成一个矩形格状,称作棋盘。两个玩家轮流自选吃掉一块还剩下的曲奇饼,而且要把它右边和下面所有的曲奇饼都被取走(如果存在)。如果不吃左上角的那一块曲奇饼(位置记为(1, 1))就没有其他选择的玩家为失败。
下图展示了一个棋盘为 4×6 的Chomp游戏的完整过程:
- (a)是初始情况;
- (b)表示玩家一吃掉位置为(3, 3)的曲奇饼;
- (c)表示玩家二吃掉位置为(1, 4)的曲奇饼;
- (d)表示玩家一吃掉位置为(1, 2)的曲奇饼;
- (e)表示玩家二吃掉位置为(2, 1)的曲奇饼;
- (f)表示玩家一在游戏中落败。
下面证明:除去1×1大小的棋盘外,其它大小的棋盘,先手必定存在必胜策略。
首先需要认定两个前提条件:
1.游戏不可能平局,因为(1,1)处的曲奇饼干必定会被取到。
2.由于每一步至少吃掉一块曲奇饼干,所以游戏在至多nm步后必定结束。
下面证明:
假设后手能胜
也就是说后手有必胜策略S,使得无论先手第一次取哪个石子,后手都能获得最后的胜利。那么现在假设先手吃掉最右下角的曲奇(n,m),接下来后手通过某种取法使得自己进入必胜的局面。但事实上,先手在第一次取的时候就可以和后手这次取的一样,进入必胜局面了,与假设矛盾。
由于吃掉曲奇时必须吃掉选定曲奇的右和下所有曲奇,因此可以做到完全模仿后手行为。
REFERENCE:https://zhuanlan.zhihu.com/p/30377770