E. Making Anti-Palindromes(ranting 1600)超详细题解

本文是一个编程初学者关于E.MakingAnti-Palindromes题目的详细解题笔记,探讨了如何判断并构造返回文串,特别关注了奇数长度字符串和某个字母出现次数超过n/2的情况。文章提供了AC代码,并解释了使用贪心算法求解问题的思路。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

E. Making Anti-Palindromes(ranting 1600)超详细题解


前言

本系列的意义在于两点,一则是作为本人(一个编程初学者)的学习笔记记录,二则希望能对后来者提供一些帮助,因为本人也为新手,难免有些错误或讲述不清之处,恳请大家指出或提出建议,本人也会虚心修改。

本系列的目标是帮助大家解决一些codeforces上,ranting1600+(或者之后会改为1300+,看博主水平吧)的题目


一、题目及翻译

1. 原题(贴图)

Alt
【戳我跳转到题目】

2. 翻译
  1. 机翻版
    Alt
  2. 省流版
    对于给定字符串,探求是否能能通过交换任意(k)次任意两个字符得到返回文串(对于字符串s,如果对于任意 i (1≤i≤n)有s[i]≠s[n−i+1],则其为返回文串),若不能,则输出-1,否则输出k

二、解析及AC代码

1.解析

我们先讨论一下无解的情况:

  1. 如果n是奇数。为什么呢 ? 不难想到如果n是奇数,那么当i==n-i+1时,必定有s[i]≠s[n−i+1]
  2. 如果某个字母(此处设为c)出现的次数大于n/2。为什么呢? 因为如果某个字母出现的次数大于n/2,那么即使我们把c都尽量放在s的左半部分,仍然会有部分c位于s的右半部分,就必然会出现s[i]≠s[n−i+1]

如果题目不是以上两种情况则有解,那么怎么求出答案呢?(本题的贪心思路还是比较难想的,起码博主是看了官方题解的,当然也是因为博主是个鶸)

首先,我们需要预处理出一共有多少对s[i]=s[n−i+1],记为cnt1,以及成对出现最多的字母的出现次数(即max(cnt2[c]) [其中cnt2[c]表示s[i]=s[n−i+1]=c出现的次数 ) ,那么 答案就等于max(cnt1/2,max(cnt2[c]))

以下把cnt1记为k,max(cnt2[c])记为m

若我们尝试贪心此问题,那么对于每一步
①如果k=m,那么我们每找到一对s[i]=s[n+1−i]=c,就必定有一对s[j]≠x且s[n+1−j]≠x(因为cnt[x]≤n/2),我们就交换s[i]和s[j]
②否则,找到该对s[i]=s[n+1−i]=c,以及一对s[j]=s[n+1−j]≠c.然后交换s[i]和s[j]

因为我们每按上述贪心思路操作一次max(k/2,m)就必定减少1,所以答案正确

那么,此时同学们就可以自己去尝试一下了,如果还是不太理解,可以参考下博主下面的AC代码

2.AC代码
#define _CRT_SECURE_NO_WARNINGS 1

#include<iostream>
#include<algorithm>
#include<cstring>
#include<queue>
#include<unordered_set>

using namespace std;

typedef pair<int, int> PII;
typedef pair<char, char> PCC;
typedef long long LL;

const int N = 3010, MAXI = 0x3f3f3f3f;

int t, n, k;
int res;
unordered_set<int>q;

int main()
{
  scanf("%d", &t);
  while (t--)
  {
      string s;
      int cnt[26] = { 0 };//存每个字母的出现的次数
      int cnt1 = 0, cnt2[26] = { 0 };//cnt1存共有多少相同对,cnt2存每个字母的相同对出现的次数
      scanf("%d", &n);
      cin >> s;
      if (n & 1)//如果n为奇数
      {
          cout << -1 << endl;
          continue;
      }
      for (int i = 0; i < n; ++i)
      {
          ++cnt[s[i] - 'a'];
      }
      for (int i = 0; i < 26; ++i)
      {
          if (cnt[i] * 2 > n) //如果某个字母出现的次数大于n/2,那么无论怎么操作,最后都将有一对字符等于它
          {
              cout << -1 << endl;
              goto A;
          }
      }
      for (int i = 0; i * 2 < n; ++i)
      {
          if (s[i] == s[n - i - 1])
          {
              ++cnt1;
              ++cnt2[s[i] - 'a'];
          }
      }
      for (int i = 0; i < 26; ++i)
      {
          if (cnt2[i] * 2 > cnt1)
          {
              cout << cnt2[i] << endl;
              goto A;
          }
      }
      cout << (cnt1 + 1) / 2 << endl;// max(m,[k/2]),此式是一步一步贪心得出,不是直接数学推导得到的
  A:
      continue;
  }
  return 0;
}

如果觉得有用还请点个赞吧,拜托拜托

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值