poj Compromise

#include <iostream>  //把每个单词看成一个字符,就是化成一维的求最长公共子序列
#include <cstdio>
#include <string>
#include <cstring>
using namespace std;
const int M = 105;
string str1[M],str2[M];
int len1,len2;
int dp[M][M];//dp[i][j]第一块前i个,第二块前j个,公共序列的长度
int path[M][M]; //dp[i][j]由三种情况得来,用1,2,3三种形式标记
void solve()
{

    for(int i = 1; i <= len1; i++)
        dp[i][0] = 0;
    for(int i = 1; i <= len2; i++)
        dp[0][i] = 0;
    for(int i = 1; i <= len1; i++)
    {
        for(int j = 1; j <= len2; j++)
        {
            if(str1[i] == str2[j])
            {
                dp[i][j] = dp[i-1][j-1] + 1;
                path[i][j] = 1;

            }
            else if(dp[i-1][j] > dp[i][j-1])
            {
                dp[i][j] = dp[i-1][j];
                path[i][j] = 2;

            }
            else
            {
                dp[i][j] = dp[i][j-1];
                path[i][j] = 3;
            }
        }
    }

}
void output(int m,int n)
{
    if(m == 0 || n == 0)
        return ;
    if(path[m][n] == 1)
    {
        output(m-1,n-1);
        cout << str1[m]<<" ";

    }
    else if(path[m][n] == 2)
    {
        output(m-1,n);
    }
    else
        output(m,n-1);

}
int main()
{
    string str;
    memset(dp,0,sizeof(dp));
    while(cin >> str)
    {
        int num = 0;
        if(str == "#")
            break;
        else
            str1[++num] = str;
        while(cin >> str)
        {
            if(str != "#")
                str1[++num] = str;
            else
                break;
        }
        len1 = num;
        num = 0;
        while(cin >> str)
        {
            if(str != "#")
                str2[++num] = str;
            else
                break;

        }
        len2 = num;
        solve();
        output(len1,len2);
        cout << endl;
    }

    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值